826 research outputs found
Wetting of ferrofluids: phenomena and control
Ferrofluids are liquids exhibiting remarkably strong response to magnetic
fields, which leads to fascinating properties useful in various applications.
Understanding the wetting properties and spreading of ferrofluids is important
for their use in microfluidics and magnetic actuation. However, this is
challenging as magnetically induced deformation of the ferrofluid surface can
affect contact angles, which are commonly used to characterize wetting
properties in other systems. In addition, interaction of the magnetic
nanoparticles and solid surface at nanoscale can have surprising effects on
ferrofluid spreading. In this review we discuss these issues with focus on
interpretation of ferrofluid contact angles. We review recent literature
examining ferrofluid wetting phenomena and outline novel wetting related
ferrofluid applications. To better understand wetting of ferrofluids, more
careful experimental work is needed
Magnetic nanocomposites at microwave frequencies
Most conventional magnetic materials used in the electronic devices are
ferrites, which are composed of micrometer-size grains. But ferrites have small
saturation magnetization, therefore the performance at GHz frequencies is
rather poor. That is why functionalized nanocomposites comprising magnetic
nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm,
and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have
a significant potential for the electronics industry. When the size of the
nanoparticles is smaller than the critical size for multidomain formation,
these nanocomposites can be regarded as an ensemble of particles in
single-domain states and the losses (due for example to eddy currents) are
expected to be relatively small. Here we review the theory of magnetism in such
materials, and we present a novel measurement method used for the
characterization of the electromagnetic properties of composites with
nanomagnetic insertions. We also present a few experimental results obtained on
composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table
Impalement transitions in droplets impacting microstructured superhydrophobic surfaces
Liquid droplets impacting a superhydrophobic surface decorated with
micro-scale posts often bounce off the surface. However, by decreasing the
impact velocity droplets may land on the surface in a fakir state, and by
increasing it posts may impale droplets that are then stuck on the surface. We
use a two-phase lattice-Boltzmann model to simulate droplet impact on
superhydrophobic surfaces, and show that it may result in a fakir state also
for reasonable high impact velocities. This happens more easily if the surface
is made more hydrophobic or the post height is increased, thereby making the
impaled state energetically less favourable.Comment: 8 pages, 4 figures, to appear in Europhysics Letter
Scaling Exponents in the Incommensurate Phase of the Sine-Gordon and U(1) Thirring Models
In this paper we study the critical exponents of the quantum sine-Gordon and
U(1) Thirring models in the incommensurate phase. This phase appears when the
chemical potential exceeds a critical value and is characterized by a
finite density of solitons. The low-energy sector of this phase is critical and
is described by the Gaussian model (Tomonaga-Luttinger liquid) with the
compactification radius dependent on the soliton density and the sine-Gordon
model coupling constant .
For a fixed value of , we find that the Luttinger parameter is
equal to 1/2 at the commensurate-incommensurate transition point and approaches
the asymptotic value away from it. We describe a possible phase
diagram of the model consisting of an array of weakly coupled chains. The
possible phases are Fermi liquid, Spin Density Wave, Spin-Peierls and Wigner
crystal.Comment: 10pages; Improved version; Submitted to Physical Review
Ferromagnetic resonance in -Co magnetic composites
We investigate the electromagnetic properties of assemblies of nanoscale
-cobalt crystals with size range between 5 nm to 35 nm, embedded in a
polystyrene (PS) matrix, at microwave (1-12 GHz) frequencies. We investigate
the samples by transmission electron microscopy (TEM) imaging, demonstrating
that the particles aggregate and form chains and clusters. By using a broadband
coaxial-line method, we extract the magnetic permeability in the frequency
range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance
with respect to an externally applied magnetic field. We find that the
zero-magnetic field ferromagnetic resonant peak shifts towards higher
frequencies at finite magnetic fields, and the magnitude of complex
permeability is reduced. At fields larger than 2.5 kOe the resonant frequency
changes linearly with the applied magnetic field, demonstrating the transition
to a state in which the nanoparticles become dynamically decoupled. In this
regime, the particles inside clusters can be treated as non-interacting, and
the peak position can be predicted from Kittel's ferromagnetic resonance theory
for non-interacting uniaxial spherical particles combined with the
Landau-Lifshitz-Gilbert (LLG) equation. In contrast, at low magnetic fields
this magnetic order breaks down and the resonant frequency in zero magnetic
field reaches a saturation value reflecting the interparticle interactions as
resulting from aggregation. Our results show that the electromagnetic
properties of these composite materials can be tuned by external magnetic
fields and by changes in the aggregation structure.Comment: 14 pages, 13 figure
Size distributions, sources and source areas of water-soluble organic carbon in urban background air
International audienceThis paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 ?g m?3 and the WSOC concentration was between 0.3 and 7.4 ?g m?3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1?10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1?10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations
Effect of a columnar defect on the shape of slow-combustion fronts
We report experimental results for the behavior of slow-combustion fronts in
the presence of a columnar defect with excess or reduced driving, and compare
them with those of mean-field theory. We also compare them with simulation
results for an analogous problem of driven flow of particles with hard-core
repulsion (ASEP) and a single defect bond with a different hopping probability.
The difference in the shape of the front profiles for excess vs. reduced
driving in the defect, clearly demonstrates the existence of a KPZ-type of
nonlinear term in the effective evolution equation for the slow-combustion
fronts. We also find that slow-combustion fronts display a faceted form for
large enough excess driving, and that there is a corresponding increase then in
the average front speed. This increase in the average front speed disappears at
a non-zero excess driving in agreement with the simulated behavior of the ASEP
model.Comment: 7 pages, 7 figure
Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media
Numerical micropermeametry is performed on three dimensional porous samples
having a linear size of approximately 3 mm and a resolution of 7.5 m. One
of the samples is a microtomographic image of Fontainebleau sandstone. Two of
the samples are stochastic reconstructions with the same porosity, specific
surface area, and two-point correlation function as the Fontainebleau sample.
The fourth sample is a physical model which mimics the processes of
sedimentation, compaction and diagenesis of Fontainebleau sandstone. The
permeabilities of these samples are determined by numerically solving at low
Reynolds numbers the appropriate Stokes equations in the pore spaces of the
samples. The physical diagenesis model appears to reproduce the permeability of
the real sandstone sample quite accurately, while the permeabilities of the
stochastic reconstructions deviate from the latter by at least an order of
magnitude. This finding confirms earlier qualitative predictions based on local
porosity theory. Two numerical algorithms were used in these simulations. One
is based on the lattice-Boltzmann method, and the other on conventional
finite-difference techniques. The accuracy of these two methods is discussed
and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur
Thinking about Later Life: Insights from the Capability Approach
A major criticism of mainstream gerontological frameworks is the inability of such frameworks to appreciate and incorporate issues of diversity and difference in engaging with experiences of aging. Given the prevailing socially structured nature of inequalities, such differences matter greatly in shaping experiences, as well as social constructions, of aging. I argue that Amartya Sen’s capability approach (2009) potentially offers gerontological scholars a broad conceptual framework that places at its core consideration of human beings (their values) and centrality of human diversity. As well as identifying these key features of the capability approach, I discuss and demonstrate their relevance to thinking about old age and aging. I maintain that in the context of complex and emerging identities in later life that shape and are shaped by shifting people-place and people-people relationships, Sen’s capability approach offers significant possibilities for gerontological research
Substantially reduced life expectancy in patients with hidradenitis suppurativa : a Finnish nationwide registry study
- …
