7,039 research outputs found

    NO sub x deposited in the stratosphere by the space shuttle, phase 1

    Get PDF
    The results of calculations to determine the amount of NOx deposited in the stratosphere by space shuttle solid rocket motors (SRM) are presented. Flow properties and chemical composition in the exhaust nozzle and plume were analyzed. The nozzle calculations show that about 4.5 lbm/sec of NOx leaves the two SRMs. The total amount of NOx deposited in the stratosphere is related to the amount leaving the nozzle via an overall plume enhancement factor (OPEF), which depends upon the influence of afterburning and shocks in enhancing the exit plane NOx mole fraction. Calculations show that the OPEF is approximately 2, indicating the mass flow of NOx in the plume to be approximately l0 lbm/sec at 30 km altitude with a possible error factor of 4. For a vehicle velocity of 3750 ft/sec, therefore, the NOx deposition rate in the stratosphere is about 2.7 x 10(-3) lbm/ft

    NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors

    Get PDF
    The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value

    Extremely Anisotropic Scintillations

    Get PDF
    A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late August and mid November, and then again between mid November and late December as the Earth twice changes its direction of motion across the scintillation pattern. If this effect can be observed then the minor-axis velocity component of the screen and the orientation of that axis can both be precisely determined. In reality the axis ratio is finite, albeit large, and spatial decorrelation of the flux pattern along the major axis may be observable via differences in the pairwise fluxes within this overlap region; in this case we can also constrain both the major-axis velocity component of the screen and the magnitude of the anisotropy.Comment: 5 pages, 4 figures, MNRAS submitte

    New multivariable capabilities of the INCA program

    Get PDF
    The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design

    Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing

    Get PDF
    Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy

    Algorithms for 3D rigidity analysis and a first order percolation transition

    Full text link
    A fast computer algorithm, the pebble game, has been used successfully to study rigidity percolation on 2D elastic networks, as well as on a special class of 3D networks, the bond-bending networks. Application of the pebble game approach to general 3D networks has been hindered by the fact that the underlying mathematical theory is, strictly speaking, invalid in this case. We construct an approximate pebble game algorithm for general 3D networks, as well as a slower but exact algorithm, the relaxation algorithm, that we use for testing the new pebble game. Based on the results of these tests and additional considerations, we argue that in the particular case of randomly diluted central-force networks on BCC and FCC lattices, the pebble game is essentially exact. Using the pebble game, we observe an extremely sharp jump in the largest rigid cluster size in bond-diluted central-force networks in 3D, with the percolating cluster appearing and taking up most of the network after a single bond addition. This strongly suggests a first order rigidity percolation transition, which is in contrast to the second order transitions found previously for the 2D central-force and 3D bond-bending networks. While a first order rigidity transition has been observed for Bethe lattices and networks with ``chemical order'', this is the first time it has been seen for a regular randomly diluted network. In the case of site dilution, the transition is also first order for BCC, but results for FCC suggest a second order transition. Even in bond-diluted lattices, while the transition appears massively first order in the order parameter (the percolating cluster size), it is continuous in the elastic moduli. This, and the apparent non-universality, make this phase transition highly unusual.Comment: 28 pages, 19 figure

    Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    Get PDF
    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface

    Model metadata report for a 3D model of Holy Island

    Get PDF
    This report is the published metadata details of a 3d modelling study by the British Geological Survey (BGS), and is based on Holy Island. The model was developed under the 3d Models for Teaching team, part of the Geological Modelling Systems program at BGS. 3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth

    Asymmetry of jets, lobe size and spectral index in radio galaxies and quasars

    Get PDF
    We investigate the correlations between spectral index, jet side and extent of the radio lobes for a sample of nearby FRII radio galaxies. In Dennett-Thorpe et al. (1997) we studied a sample of quasars and found that the high surface brightness regions had flatter spectra on the jet side (explicable as a result of Doppler beaming) whilst the extended regions had spectral asymmetries dependent on lobe length. Unified schemes predict that asymmetries due to beaming will be much smaller in narrow-line radio galaxies than in quasars: we therefore investigate in a similar manner, a sample of radio galaxies with detected jets. We find that spectral asymmetries in these objects are uncorrelated with jet sidedness at all brightness levels, but depend on relative lobe volume. Our results are not in conflict with unified schemes, but suggest that the differences between the two samples are due primarily to power or redshift, rather than to orientation. We also show directly that hotspot spectra steepen as a function of radio power or redshift. Whilst a shift in observed frequency due to the redshift may account for some of the steepening, it cannot account for all of it, and a dependence on radio power is required.Comment: accepted for publication in MNRAS, 10 pages; typos/minor correctio

    Study of high resolution wind measuring systems. phase ii- analysis

    Get PDF
    Comparative analysis of high resolution wind measuring system
    • …
    corecore