99 research outputs found

    Leaving colorectal polyps in place can be achieved with high accuracy using blue light imaging (BLI)

    Get PDF
    Objectives: A negative predictive value of more than 90% is proposed by the American Society of Gastrointestinal Endoscopy Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) statement for a new technology in order to leave distal diminutive colorectal polyps in place without resection. To our knowledge, no prior prospective study has yet evaluated the feasibility of the most recently introduced blue light imaging (BLI) system for real-time endoscopic prediction of polyp histology for the specific endpoint of leaving hyperplastic polyps in place. Aims: Prospective assessment of real-time prediction of colorectal polyps by using BLI. Material and methods: In total, 177 consecutive patients undergoing screening or surveillance colonoscopy were included. Colorectal polyps were evaluated in real-time by using high-definition endoscopy and the BLI technology without optical magnification. Before resection, the endoscopist described each polyp according to size, shape and surface characteristics (pit and vascular pattern, colour and depression), and histology was predicted with a level of confidence (high or low). Results: Histology was predicted with high confidence in 92.5% of polyps. Sensitivity of BLI for prediction of adenomatous histology was 92.68%, with a specificity and accuracy of 94.87 and 93.75%, respectively. Following the recommendation of the PIVI statement, positive and negative predictive values were calculated with values of 95 and 92.5%, respectively. Prediction of surveillance based on both US and European guidelines was correctly predicted in 91% of patients. Conclusion: The most recently introduced BLI technology is accurate enough to leave distal colorectal polyps in place without resection. BLI also allowed for assignment of postpolypectomy surveillance intervals. This approach therefore has the potential to reduce costs and risks associated with the redundant removal of diminutive colorectal polyps

    Feasibility trial of the newly introduced optical enhancement technology in patients with gastroesophageal reflux disease

    Get PDF
    BACKGROUND: Optical Enhancement technology (OE) combines bandwidth-limited light and image enhancement processing technology to enhance subtle mucosal and vascular details. This is the first study assessing the new technology for the diagnosis of gastroesophageal reflux disease (GERD). PATIENTS AND METHODS: Consecutive patients with GERD and controls were prospectively included. The distal esophagus was examined in all quadrants with high definition white-light endoscopy (HD-WLE) followed by OE and biopsies for histopathological analysis. Features observed only by OE were compared between controls and patients with GERD. RESULTS: A total of 100 areas were evaluated. About 56% of patients had a diagnosis of GERD. The mean age of patients was 53 years (range 27-89 years), 60% were female. Compared to controls, patients with diagnosis of GERD showed significantly more often tortuosity (p = 0.042), dilation (p = 0.0003), and increased number (p = 0.001) of intrapapillary capillary loops (IPCLs). In addition, increased vascularity and mucosal breaks were significantly more often found in patients with GERD as compared to controls (p < 0.05). On multivariate analysis, increased number and dilation of IPCL were the best predictors of GERD. CONCLUSIONS: The newly introduced OE technology significantly improves the diagnosis of GERD compared to HD-WLE. The results should be confirmed in a multicenter trial

    Downregulation of peroxisome proliferator-activated receptors (PPARs) in nasal polyposis

    Get PDF
    BACKGROUND: Peroxisome proliferator-activated receptor (PPAR) α, βδ and γ are nuclear receptors activated by fatty acid metabolites. An anti-inflammatory role for these receptors in airway inflammation has been suggested. METHODS: Nasal biopsies were obtained from 10 healthy volunteers and 10 patients with symptomatic allergic rhinitis. Nasal polyps were obtained from 22 patients, before and after 4 weeks of local steroid treatment (fluticasone). Real-time RT-PCR was used for mRNA quantification and immunohistochemistry for protein localization and quantification. RESULTS: mRNA expression of PPARα, PPARβδ, PPARγ was found in all specimens. No differences in the expression of PPARs were obtained in nasal biopsies from patients with allergic rhinitis and healthy volunteers. Nasal polyps exhibited lower levels of PPARα and PPARγ than normal nasal mucosa and these levels were, for PPARγ, further reduced following steroid treatment. PPARγ immunoreactivity was detected in the epithelium, but also found in smooth muscle of blood vessels, glandular acini and inflammatory cells. Quantitative evaluation of the epithelial immunostaining revealed no differences between nasal biopsies from patients with allergic rhinitis and healthy volunteers. In polyps, the PPARγ immunoreactivity was lower than in nasal mucosa and further decreased after steroid treatment. CONCLUSION: The down-regulation of PPARγ, in nasal polyposis but not in turbinates during symptomatic seasonal rhinitis, suggests that PPARγ might be of importance in long standing inflammations

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival

    Remodeling of the Streptococcus agalactiae Transcriptome in Response to Growth Temperature

    Get PDF
    BACKGROUND: To act as a commensal bacterium and a pathogen in humans and animals, Streptococcus agalactiae (group B streptococcus, GBS) must be able to monitor and adapt to different environmental conditions. Temperature variation is a one of the most commonly encountered variables. METHODOLOGY/PRINCIPAL FINDINGS: To understand the extent to which GBS modify gene expression in response to temperatures encountered in the various hosts, we conducted a whole genome transcriptome analysis of organisms grown at 30 degrees C and 40 degrees C. We identified extensive transcriptome remodeling at various stages of growth, especially in the stationary phase (significant transcript changes occurred for 25% of the genes). A large proportion of genes involved in metabolism was up-regulated at 30 degrees C in stationary phase. Conversely, genes up-regulated at 40 degrees C relative to 30 degrees C include those encoding virulence factors such as hemolysins and extracellular secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger zones of hemolysis and enhanced hemolytic activity at 40 degrees C. A key theme identified by our study was that genes involved in purine metabolism and iron acquisition were significantly up-regulated at 40 degrees C. CONCLUSION/SIGNIFICANCE: Growth of GBS in vitro at different temperatures resulted in extensive remodeling of the transcriptome, including genes encoding proven and putative virulence genes. The data provide extensive new leads for molecular pathogenesis research

    De Novo

    Full text link
    The crystal structure of form 4 of the drug 4-[4-(2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-yl]benzoic acid is determined using a protocol for NMR powder crystallography at natural isotopic abundance combining solid-state 1H NMR spectroscopy, crystal structure prediction, and density functional theory chemical shift calculations. This is the first example of NMR crystal structure determination for a molecular compound of previously unknown structure, and at 422 g/mol this is the largest compound to which this method has been applied so far

    Identification and developmental characterization of a novel Y-box protein from Drosophila melanogaster.

    No full text
    The Y-box proteins are a family of highly conserved nucleic acid binding proteins which are conserved from bacteria to human. In this report we have identified a new member of this family from Drosophila melanogaster. Degenerate-PCR was used to identify a conserved region within the highly conserved cold-shock domain (CSD) of Y-box proteins. Subsequently, the cDNA for this gene was sequenced, and the identified open reading frame was named ypsilon schachtel (yps). The expression pattern of yps indicates that this gene is expressed throughout development with the highest level of expression found in adult flies. In situ hybridization shows that the yps mRNA is maternally loaded into the egg cytoplasm. In addition, there appears to be expression of yps mRNA in mesodermal tissue during embryogenesis. YPS, while containing a conserved CSD, is novel in that it completely lacks the alternating acidic and basic regions found in the C-terminus of the other vertebrate eukaryotic Y-box proteins. The CSD of yps was purified and gel-shift analysis showed that this domain can interact with RNA. We predict that YPS would be an RNA-binding protein due to these results and the motifs which have been identified within the amino acid sequence
    • …
    corecore