826 research outputs found
Mystery of the Lyα Blobs
We present Spitzer Space Telescope observations of the extended Lyman α blobs associated with the z=2.38 over-density J2143-4423, the largest known structure (110 Mpc) above z=2. We detect all 4 of the Lyα blobs in all four IRAC channels and we also detect 3 out of 4 of the blobs with MIPS 24μm. Conversion from rest-wavelength 7μm to total far-infrared luminosity using locally derived correlations suggests all the detected sources are in the class of ULIRGs or even Hyper-LIRGs. We find a weak correlation between Lyα and mid-infrared emission for the Lyα blobs (L_(Lyα)/L_(bol) = 0.05-0.2%). Nearly all Lyα blobs show some evidence for interaction, either in HST imaging, or the proximity of multiple MIPS sources within the Lyα cloud. This suggests that interaction or even mergers may be related to the production of Lyα blobs. Optical through infrared SEDs of the Lyα blobs do not show a clear 1.6μm bump, but rather are indicative of a composite of star formation and AGN energy sources
The WFC3 Infrared Spectroscopic Parallel (WISP) Survey
We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is
obtaining slitless, near-infrared grism spectroscopy of ~ 90 independent,
high-latitude fields by observing in the pure parallel mode with Wide Field
Camera-3 on the Hubble Space Telescope for a total of ~ 250 orbits. Spectra are
obtained with the G102 (lambda=0.8-1.17 microns, R ~ 210) and G141 grisms
(lambda=1.11-1.67 microns, R ~ 130), together with direct imaging in the J- and
H-bands (F110W and F140W, respectively). In the present paper, we present the
first results from 19 WISP fields, covering approximately 63 square arc
minutes. For typical exposure times (~ 6400 sec in G102 and ~ 2700 sec in
G141), we reach 5-sigma detection limits for emission lines of 5 x 10^(-17)
ergs s^(-1) cm^(-2) for compact objects. Typical direct imaging 5sigma-limits
are 26.8 and 25.0 magnitudes (AB) in F110W and F140W, respectively. Restricting
ourselves to the lines measured with highest confidence, we present a list of
328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The
single-line emitters are likely to be a mix of Halpha and [OIII]5007,4959 A,
with Halpha predominating. The overall surface density of high-confidence
emission-line objects in our sample is approximately 4 per arcmin^(2).These
first fields show high equivalent width sources, AGN, and post starburst
galaxies. The median observed star formation rate of our Halpha selected sample
is 4 Msol/year. At intermediate redshifts, we detect emission lines in galaxies
as faint as H_140 ~ 25, or M_R < -19, and are sensitive to star formation rates
down to less than 1 Msol/year. The slitless grisms on WFC3 provide a unique
opportunity to study the spectral properties of galaxies much fainter than L*
at the peak of the galaxy assembly epoch.Comment: 15 pages, 12 figures, submitted to Ap
A Narrowband Imaging Search for [OIII] Emission from Galaxies at z > 3
We present the results of a narrow-band survey of QSO fields at redshifts that place the [OIII](5007) emission line in the 1% 2.16micron filter. We have observed 3 square arcminutes and detected one emission line candidate object in the field around PC 1109+4642. We discuss the possibilities that this object is a star-forming galaxy at the QSO redshift, z_em=3.313 or a Seyfert galaxy. In the former case, we infer a star formation rate of 170 Msun/yr for this Kprime=21.3 object. The galaxy has a compact but resolved morphology, with a FWHM=0.6arcs, or 4.2kpc at z=3.313 (H_0=50 km/s/Mpc and q_0=0.5). The comoving density of such objects in QSO environments appears to be 0.0033Mpc^3, marginally lower (<= 3sigma) than the density observed for Halpha-emitters in absorption-line fields at z~2.5, but similar to the density of Lyman Break Galaxies at z~3. If on the other hand, most of the line emission is [OIII] from a Seyfert 2 nucleus at z=3.31, then the high inferred volume density could imply a large evolution in the Seyfert 2 luminosity function from the current epoch. We find the field containing the object to also contain many faint extended objects in the Kprime image, but little significant excess over the expected number-magnitude relation. We discuss the implication of the emission line being a longer wavelength line at a lower redshift
Extremely Red Objects from the NICMOS/HST Parallel Imaging Survey
We present a catalog of extremely red objects discovered using the NICMOS/HST
parallel imaging database and ground-based optical follow-up observations.
Within an area of 16 square arc-minutes, we detect 15 objects with and . We have also obtained K-band photometry for
a subset of the 15 EROs. All of the selected EROs imaged at
K-band have . Our objects have colors in the
range of 1.3 - 2.1, redder than the cluster ellipticals at and
nearly 1 magnitude redder than the average population selected from the F160W
images at the same depth. In addition, among only 22 NICMOS pointings, we
detected two groups or clusters in two fields, each contains 3 or more EROs,
suggesting that extremely red galaxies may be strongly clustered. At bright
magnitudes with , the ERO surface density is similar to what
has been measured by other surveys. At the limit of our sample, F160W = 21.5,
our measured surface density is 0.94 arcmin^{-2}. Excluding the two
possible groups/clusters and the one apparently stellar object, reduces the
surface density to 0.38 arcmin^{-2}.Comment: To appear in the AJ August issue. Replaced with the published versio
Far-ultraviolet imaging of the Hubble Deep Field-North: Star formation in normal galaxies at z < 1
We present far-ultraviolet (FUV) imaging of the Hubble Deep Field-North (HDF-N) taken with the Solar Blind Channel of the Advanced Camera for Surveys (ACS SBC) and the FUV MAMA detector of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The full WFPC2 deep field has been observed at 1600 Å. We detect 134 galaxies and one star down to a limit of FUV_(AB) ~ 29. All sources have counterparts in the WFPC2 image. Redshifts (spectroscopic or photometric) for the detected sources are in the range 0 < z < 1. We find that the FUV galaxy number counts are higher than those reported by GALEX, which we attribute at least in part to cosmic variance in the small HDF-N field of view. Six of the 13 Chandra sources at z < 0.85 in the HDF-N are detected in the FUV, and those are consistent with starbursts rather than active galactic nuclei. Cross-correlating with Spitzer sources in the field, we find that the FUV detections show general agreement with the expected L_(IR)/L_(UV) versus β relationship. We infer star formation rates (SFRs), corrected for extinction using the UV slope, and find a median value of 0.3 M_☉ yr^(-1) for FUV-detected galaxies, with 75% of detected sources having SFR < 1 M_☉ yr^(-1). Examining the morphological distribution of sources, we find that about half of all FUV-detected sources are identified as spiral galaxies. Half of morphologically selected spheroid galaxies at z < 0.85 are detected in the FUV, suggesting that such sources have had significant ongoing star formation in the epoch since z ~ 1
QSOs and Absorption Line Systems Surrounding the Hubble Deep Field
We have imaged a 45x45 sq. arcmin. area centered on the Hubble Deep Field
(HDF) in UBVRI passbands, down to respective limiting magnitudes of
approximately 21.5, 22.5, 22.2, 22.2, and 21.2. The principal goals of the
survey are to identify QSOs and to map structure traced by luminous galaxies
and QSO absorption line systems in a wide volume containing the HDF. We have
selected QSO candidates from color space, and identified 4 QSOs and 2 narrow
emission-line galaxies (NELGs) which have not previously been discovered,
bringing the total number of known QSOs in the area to 19. The bright z=1.305
QSO only 12 arcmin. away from the HDF raises the northern HDF to nearly the
same status as the HDF-S, which was selected to be proximate to a bright QSO.
About half of the QSO candidates remain for spectroscopic verification.
Absorption line spectroscopy has been obtained for 3 bright QSOs in the field,
using the Keck 10m, ARC 3.5m, and MDM 2.4m telescopes. Five heavy-element
absorption line systems have been identified, 4 of which overlap the
well-explored redshift range covered by deep galaxy redshift surveys towards
the HDF. The two absorbers at z=0.5565 and z=0.5621 occur at the same redshift
as the second most populated redshift peak in the galaxy distribution, but each
is more than 7Mpc/h (comoving, Omega_M=1, Omega_L=0) away from the HDF line of
sight in the transverse dimension. This supports more indirect evidence that
the galaxy redshift peaks are contained within large sheet-like structures
which traverse the HDF, and may be precursors to large-scale ``pancake''
structures seen in the present-day galaxy distribution.Comment: 36 pages, including 9 figures and 8 tables. Accepted for publication
in the Astronomical Journa
IRAC Excess in Distant Star-Forming Galaxies: Tentative Evidence for the 3.3m Polycyclic Aromatic Hydrocarbon Feature ?
We present evidence for the existence of an IRAC excess in the spectral
energy distribution (SED) of 5 galaxies at 0.6<z<0.9 and 1 galaxy at z=1.7.
These 6 galaxies, located in the Great Observatories Origins Deep Survey field
(GOODS-N), are star forming since they present strong 6.2, 7.7, and 11.3 um
polycyclic aromatic hydrocarbon (PAH) lines in their Spitzer IRS mid-infrared
spectra. We use a library of templates computed with PEGASE.2 to fit their
multiwavelength photometry and derive their stellar continuum. Subtraction of
the stellar continuum enables us to detect in 5 galaxies a significant excess
in the IRAC band pass where the 3.3 um PAH is expected. We then assess if the
physical origin of the IRAC excess is due to an obscured active galactic
nucleus (AGN) or warm dust emission. For one galaxy evidence of an obscured AGN
is found, while the remaining four do not exhibit any significant AGN activity.
Possible contamination by warm dust continuum of unknown origin as found in the
Galactic diffuse emission is discussed. The properties of such a continuum
would have to be different from the local Universe to explain the measured IRAC
excess, but we cannot definitively rule out this possibility until its origin
is understood. Assuming that the IRAC excess is dominated by the 3.3 um PAH
feature, we find good agreement with the observed 11.3 um PAH line flux arising
from the same C-H bending and stretching modes, consistent with model
expectations. Finally, the IRAC excess appears to be correlated with the
star-formation rate in the galaxies. Hence it could provide a powerful
diagnostic for measuring dusty star formation in z>3 galaxies once the
mid-infrared spectroscopic capabilities of the James Webb Space Telescope
become available.Comment: 25 pages, 4 figures, accepted by Ap
- …
