2,192 research outputs found
Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain
A number of international campaigns have recently proposed the use of cool roofs worldwide in order to cope with the summer urban heat island (UHI) effect. This work investigates cool roof strategy and examines the potential of such a strategy for Bahrain. Full-scale measurement, meteorological modelling and thermal simulation of five standard roofs were performed during particular summer days due to the high intensity levels of solar irradiation. This work shows that the light tile roof and metal decking are relatively cooler and more comfortable than others and that the maximum reduction in heat gain occurs for a light tile roof with thermal insulation materials. Nevertheless, without insulation the cooling load is increased by only 1.3%. This percentage seems not to be cost-effective where economics and building construction are concerned. In contrast, the reduction percentage due to the use of thermal insulation in the case of dark tile roof, felt bitumen roof and screed roof increases to 5–7%, which is more cost effective. This work concludes that the cool roof strategy is the most cost-effective for the hot climate of Bahrain, which has a long cooling season. With the current levels of urban development in Bahrain, cool roofs can reduce UHI intensity and building cooling loads, lowering demand for electricity and greenhouse gas emissions from power plants. To avoid any negative consequences from using this strategy, however, trade-offs between urban mitigation and adoptation strategies and complementary technologies should be accounted for in future urban development plans
Quasiparticles dynamics in high-temperature superconductors far from equilibrium: an indication of pairing amplitude without phase coherence
We perform time resolved photoelectron spectroscopy measurements of optimally
doped \tn{Bi}_2\tn{Sr}_2\tn{CaCu}_2\tn{O}_{8+\delta} (Bi-2212) and
\tn{Bi}_2\tn{Sr}_{2-x}\tn{La}_{x}\tn{Cu}\tn{O}_{6+\delta} (Bi-2201). The
electrons dynamics show that inelastic scattering by nodal quasiparticles
decreases when the temperature is lowered below the critical value of the
superconducting phase transition. This drop of electronic dissipation is
astonishingly robust and survives to photoexcitation densities much larger than
the value sustained by long-range superconductivity. The unconventional
behaviour of quasiparticle scattering is ascribed to superconducting
correlations extending on a length scale comparable to the inelastic path. Our
measurements indicate that strongly driven superconductors enter in a regime
without phase coherence but finite pairing amplitude. The latter vanishes near
to the critical temperature and has no evident link with the pseudogap observed
by Angle Resolved Photoelectron Spectroscopy (ARPES).Comment: 7 pages, 5 Figure
The Effects of Intermittent Solar Radiation in Off-grid Solar Power System A Case Study of Two Cities; Sacramento, CA and Miami, FL 'Worst Month' method
This study illustrates the impact of the solar radiation by comparing the design of two off-grid PV systems installed in two different locations have same annual average solar irradiation (insolation) values at fixed tilt angle. The case study selected the city of Sacramento, CA and Miami, FL. The monthly average Irradiation values in Sacramento are very diverse where the minimum, average and maximum values are spaced compared with the values in Miami which have no significant variation of solar irradiation from month to month. Comparing the Design of the two different systems will reflect the impact of the sporadic solar insolation on the rating values for the components of each system, which is affecting PV system cost. The design assumes the same load based and the worst case scenario of the solar irradiation. Each system will consist of PV modules, charge controller, power inverter and batteries
New electronic orderings observed in cobaltates under the influence of misfit periodicities
We study with ARPES the electronic structure of CoO2 slabs, stacked with
rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi
Surfaces (FS) in phases with different doping and/or periodicities reveal the
influence of the RS potential on the electronic structure. We show that these
RS potentials are well ordered, even in incommensurate phases, where STM images
reveal broad stripes with width as large as 80\AA. The anomalous evolution of
the FS area at low dopings is consistent with the localization of a fraction of
the electrons. We propose that this is a new form of electronic ordering,
induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the
FS becomes smaller than the Brillouin Zone of the stacked structure
First direct observation of a nearly ideal graphene band structure
Angle-resolved photoemission and X-ray diffraction experiments show that
multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of
carbon that is composed of effectively isolated graphene sheets. The unique
rotational stacking of these films cause adjacent graphene layers to
electronically decouple leading to a set of nearly independent linearly
dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds
to an individual macro-scale graphene sheet in a multilayer stack where
AB-stacked sheets can be considered as low density faults.Comment: 5 pages, 4 figure
Ultrafast filling of an electronic pseudogap in an incommensurate crystal
We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time
resolved photoemission spectroscopy. The dispersion of electronic states is in
qualitative agreement with band structure calculated for the VS2 slab without
the incommensurate distortion. Nonetheless, the spectra display a temperature
dependent pseudogap instead of quasiparticles crossing. The sudden
photoexcitation at 50 K induces a partial filling of the electronic pseudogap
within less than 80 fs. The electronic energy flows into the lattice modes on a
comparable timescale. We attribute this surprisingly short timescale to a very
strong electron-phonon coupling to the incommensurate distortion. This result
sheds light on the electronic localization arising in aperiodic structures and
quasicrystals
Electronic structure of epitaxial graphene grown on the C-face of SiC and its relation to the structure
International audienceThe interest in graphene stems from its unique band structure that photoemission spectroscopy can directly probe. However, the preparation method can significantly alter graphene's pristine atomic structure and in turn the photoemission spectroscopy spectra. After a short review of the observed band structure for graphene prepared by various methods, we focus on graphene grown on silicon carbide. The semiconducting single crystalline hexagonal SiC provides a substrate of various dopings, where bulk bands do not interfere with that of graphene. Large sheets of high structural quality flat graphene grow on SiC, which allows the exact same material to be used for fundamental studies and as a platform for scalable electronics. Moreover, a new graphene allotrope (multilayer epitaxial graphene) was discovered to grow on the 4H-SiC C-face by the confinement controlled sublimation method. We will focus on the electronic structure of this new graphene allotrope and its connection to its atomic structure
- …
