523 research outputs found
Quantum enigma machines and the locking capacity of a quantum channel
The locking effect is a phenomenon which is unique to quantum information
theory and represents one of the strongest separations between the classical
and quantum theories of information. The Fawzi-Hayden-Sen (FHS) locking
protocol harnesses this effect in a cryptographic context, whereby one party
can encode n bits into n qubits while using only a constant-size secret key.
The encoded message is then secure against any measurement that an eavesdropper
could perform in an attempt to recover the message, but the protocol does not
necessarily meet the composability requirements needed in quantum key
distribution applications. In any case, the locking effect represents an
extreme violation of Shannon's classical theorem, which states that
information-theoretic security holds in the classical case if and only if the
secret key is the same size as the message. Given this intriguing phenomenon,
it is of practical interest to study the effect in the presence of noise, which
can occur in the systems of both the legitimate receiver and the eavesdropper.
This paper formally defines the locking capacity of a quantum channel as the
maximum amount of locked information that can be reliably transmitted to a
legitimate receiver by exploiting many independent uses of a quantum channel
and an amount of secret key sublinear in the number of channel uses. We provide
general operational bounds on the locking capacity in terms of other well-known
capacities from quantum Shannon theory. We also study the important case of
bosonic channels, finding limitations on these channels' locking capacity when
coherent-state encodings are employed and particular locking protocols for
these channels that might be physically implementable.Comment: 37 page
Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection
We present a simple protocol to purify a coherent-state superposition that
has undergone a linear lossy channel. The scheme constitutes only a single beam
splitter and a homodyne detector, and thus is experimentally feasible. In
practice, a superposition of coherent states is transformed into a classical
mixture of coherent states by linear loss, which is usually the dominant
decoherence mechanism in optical systems. We also address the possibility of
producing a larger amplitude superposition state from decohered states, and
show that in most cases the decoherence of the states are amplified along with
the amplitude.Comment: 8 pages, 10 figure
A Multicanonical Molecular Dynamics Study on a Simple Bead-Spring Model for Protein Folding
We have performed a multicanonical molecular dynamics simulation on a simple
model protein.We have studied a model protein composed of charged, hydrophobic,
and neutral spherical bead monomers.Since the hydrophobic interaction is
considered to significantly affect protein folding, we particularly focus on
the competition between effects of the Coulomb interaction and the hydrophobic
interaction. We found that the transition which occurs upon decreasing the
temperature is markedly affected by the change in both parameters and forms of
the hydrophobic potential function, and the transition changes from first order
to second order, when the Coulomb interaction becomes weaker.Comment: 7 pages, 6 postscript figures, To appear in J.Phys.Soc.Jpn. Vol.70
No.
Demonstration of Near-Optimal Discrimination of Optical Coherent States
The optimal discrimination of nonorthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally realize a new and simple quantum measurement strategy capable of discriminating two coherent states with smaller error probabilities than can be obtained using the standard measurement devices: the Kennedy receiver and the homodyne receiver
Exercise Effects on Methylation of ASC Gene
Chronic moderate exercise has been reported to reduce pro-inflammatory cytokines. To analyze the molecular mechanisms by which training exerts these effects, the epigenetic influences of age and exercise on the ASC gene, which is responsible for IL-1 beta and IL-18 secretion, were investigated by ASC gene methylation. Further, the relationship between carcinogenesis and exercise, and methylation of the p15 tumor suppressive gene was also analyzed. High-intensity interval walking exercise, consisting of 3 min low-intensity walking at 40% of peak aerobic capacity followed by a 3 min high-intensity walking period above 70% of peak aerobic capacity, was continued for 6 months. Peripheral blood DNA extracts from young control (n = 34), older control (n = 153), and older exercise (n = 230) groups were then analyzed by pyrosequencing for DNA methylation. Methylation of ASC decreased significantly with age (young control vs. older control, p < 0.01), which is indicative of an age-dependent increase in ASC expression. Compared to the older control group, the degree of ASC methylation was higher in the older exercise group (older control vs. older exercise: p < 0.01), and presumably lower ASC expression. Neither exercise nor age affected the methylation of the p15. In summary, chronic moderate exercise appears to attenuate the age-dependent decrease in ASC methylation, implying suppression of excess pro-inflammatory cytokines through reduction of ASC expression.ArticleINTERNATIONAL JOURNAL OF SPORTS MEDICINE. 31(9):671-675 (2010)journal articl
Entanglement quantification from incomplete measurements: Applications using photon-number-resolving weak homodyne detectors
The certificate of success for a number of important quantum information
processing protocols, such as entanglement distillation, is based on the
difference in the entanglement content of the quantum states before and after
the protocol. In such cases, effective bounds need to be placed on the
entanglement of non-local states consistent with statistics obtained from local
measurements. In this work, we study numerically the ability of a novel type of
homodyne detector which combines phase sensitivity and photon-number resolution
to set accurate bounds on the entanglement content of two-mode quadrature
squeezed states without the need for full state tomography. We show that it is
possible to set tight lower bounds on the entanglement of a family of two-mode
degaussified states using only a few measurements. This presents a significant
improvement over the resource requirements for the experimental demonstration
of continuous-variable entanglement distillation, which traditionally relies on
full quantum state tomography.Comment: 18 pages, 6 figure
Quantum optics in the phase space - A tutorial on Gaussian states
In this tutorial, we introduce the basic concepts and mathematical tools
needed for phase-space description of a very common class of states, whose
phase properties are described by Gaussian Wigner functions: the Gaussian
states. In particular, we address their manipulation, evolution and
characterization in view of their application to quantum information.Comment: Tutorial. 23 pages, 1 figure. Updated version accepted for
publication in EPJ - ST devoted to the memory of Federico Casagrand
- …