8 research outputs found

    Transcript profiling of candidate genes in testis of pigs exhibiting large differences in androstenone levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boar taint is an unpleasant odor and flavor of the meat and occurs in a high proportion of uncastrated male pigs. Androstenone, a steroid produced in testis and acting as a sex pheromone regulating reproductive function in female pigs, is one of the main compounds responsible for boar taint. The primary goal of the present investigation was to determine the differential gene expression of selected candidate genes related to levels of androstenone in pigs.</p> <p>Results</p> <p>Altogether 2560 boars from the Norwegian Landrace and Duroc populations were included in this study. Testicle samples from the 192 boars with most extreme high or low levels of androstenone in fat were used for RNA extraction, and 15 candidate genes were selected and analyzed by real-competitive PCR analysis. The genes Cytochrome P450 c17 (<it>CYP17A1</it>), Steroidogenic acute regulatory protein (<it>STAR</it>), Aldo-keto reductase family 1 member C4 (<it>AKR1C4</it>), Short-chain dehydrogenase/reductase family member 4 (<it>DHRS4</it>), Ferritin light polypeptide (<it>FTL</it>), Sulfotransferase family 2A, dehydroepiandrosterone-preferring member 1 (<it>SULT2A1</it>), Cytochrome P450 subfamily XIA polypeptide 1 (<it>CYP11A1</it>), Cytochrome b5 (<it>CYB5A</it>), and 17-beta-Hydroxysteroid dehydrogenase IV (<it>HSD17B4</it>) were all found to be significantly (P < 0.05) up-regulated in high androstenone boars in both Duroc and Landrace. Furthermore, Cytochrome P450 c19A2 (<it>CYP19A2</it>) was down-regulated and progesterone receptor membrane component 1 (<it>PGRMC1</it>) was up-regulated in high-androstenone Duroc boars only, while <it>CYP21 </it>was significantly down-regulated (2.5) in high-androstenone Landrace only. The genes Nuclear Receptor co-activator 4 (<it>NCOA4</it>), Sphingomyrlin phosphodiesterase 1 (<it>SMPD1</it>) and 3β-hydroxysteroid dehydrogenase (<it>HSD3B</it>) were not significantly differentially expressed in any breeds. Additionally, association studies were performed for the genes with one or more detected SNPs. Association between SNP and androstenone level was observed in <it>CYB5A </it>only, suggesting cis-regulation of the differential transcription in this gene.</p> <p>Conclusion</p> <p>A large pig material of highly extreme androstenone levels is investigated. The current study contributes to the knowledge about which genes that is differentially expressed regard to the levels of androstenone in pigs. Results in this paper suggest that several genes are important in the regulation of androstenone level in boars and warrant further evaluation of the above mentioned candidate genes, including analyses in different breeds, identification of causal mutations and possible gene interactions.</p

    Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs

    Get PDF
    <div><p>Boar taint is an offensive odour and/or taste from a proportion of non-castrated male pigs caused by skatole and androstenone accumulation during sexual maturity. Castration is widely used to avoid boar taint but is currently under debate because of animal welfare concerns. This study aimed to identify expression quantitative trait loci (eQTLs) with potential effects on boar taint compounds to improve breeding possibilities for reduced boar taint. Danish Landrace male boars with low, medium and high genetic merit for skatole and human nose score (HNS) were slaughtered at ~100 kg. Gene expression profiles were obtained by RNA-Seq, and genotype data were obtained by an Illumina 60K Porcine SNP chip. Following quality control and filtering, 10,545 and 12,731 genes from liver and testis were included in the eQTL analysis, together with 20,827 SNP variants. A total of 205 and 109 single-tissue eQTLs associated with 102 and 58 unique genes were identified in liver and testis, respectively. By employing a multivariate Bayesian hierarchical model, 26 eQTLs were identified as significant multi-tissue eQTLs. The highest densities of eQTLs were found on pig chromosomes SSC12, SSC1, SSC13, SSC9 and SSC14. Functional characterisation of eQTLs revealed functions within regulation of androgen and the intracellular steroid hormone receptor signalling pathway and of xenobiotic metabolism by cytochrome P450 system and cellular response to oestradiol. A QTL enrichment test revealed 89 QTL traits curated by the Animal Genome PigQTL database to be significantly overlapped by the genomic coordinates of <i>cis</i>-acting eQTLs. Finally, a subset of 35 <i>cis</i>-acting eQTLs overlapped with known boar taint QTL traits. These eQTLs could be useful in the development of a DNA test for boar taint but careful monitoring of other overlapping QTL traits should be performed to avoid any negative consequences of selection.</p></div
    corecore