135 research outputs found
Reducing CO2 Emissions in the Upper Midwest: Technology, Resources, Economics, and Policy
We develop scenarios for reducing carbon dioxide emissions from the electricity sector in the upper Midwest (Wisconsin, Illinois, Minnesota, Iowa, North Dakota, South Dakota, Montana, Wyoming, and Manitoba) by 80% relative to 1990 levels. The report has three major components: 1) an inventory of CO2 emissions from all fossil fuel combustion in the region from 1960-2001, subdividing by economic sector and specific electricity generating station; 2) an evaluation of all electricity resources in the region and all technologies for utilizing them, taking into account the overall scale of the resource, technology costs, and other issues that influence the selection of a certain technology; and 3) the development of a simulation model to examine the impact of various factors (policies, prices, technologies, resources) on the regional electricity supply and its emissions from 2005-2055.Environmental Economics and Policy,
Smut in Small Grains
Smut Is one or the most common and widespread diseases of cereals and causes an annual loss on Iowa farms or many thousands and often millions or dollars. Smut not only cuts down yield, but it often seriously Impairs the quality or grain and lowers the price per bushel. It Is fortunate that smut Is unlike many or the other fungus and bacterial diseases of farm crops, in that It can be destroyed easily and at very little expense
Orbit Determination with the two-body Integrals
We investigate a method to compute a finite set of preliminary orbits for
solar system bodies using the first integrals of the Kepler problem. This
method is thought for the applications to the modern sets of astrometric
observations, where often the information contained in the observations allows
only to compute, by interpolation, two angular positions of the observed body
and their time derivatives at a given epoch; we call this set of data
attributable. Given two attributables of the same body at two different epochs
we can use the energy and angular momentum integrals of the two-body problem to
write a system of polynomial equations for the topocentric distance and the
radial velocity at the two epochs. We define two different algorithms for the
computation of the solutions, based on different ways to perform elimination of
variables and obtain a univariate polynomial. Moreover we use the redundancy of
the data to test the hypothesis that two attributables belong to the same body
(linkage problem). It is also possible to compute a covariance matrix,
describing the uncertainty of the preliminary orbits which results from the
observation error statistics. The performance of this method has been
investigated by using a large set of simulated observations of the Pan-STARRS
project.Comment: 23 pages, 1 figur
Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater Sage-Grouse (Centrocercus urophasianus).
There is increasing evidence that individuals in many species avoid areas exposed to chronic anthropogenic noise, but the impact of noise on those who remain in these habitats is unclear. One potential impact is chronic physiological stress, which can affect disease resistance, survival and reproductive success. Previous studies have found evidence of elevated stress-related hormones (glucocorticoids) in wildlife exposed to human activities, but the impacts of noise alone are difficult to separate from confounding factors. Here we used an experimental playback study to isolate the impacts of noise from industrial activity (natural gas drilling and road noise) on glucocorticoid levels in greater sage-grouse (Centrocercus urophasianus), a species of conservation concern. We non-invasively measured immunoreactive corticosterone metabolites from fecal samples (FCMs) of males on both noise-treated and control leks (display grounds) in two breeding seasons. We found strong support for an impact of noise playback on stress levels, with 16.7% higher mean FCM levels in samples from noise leks compared with samples from paired control leks. Taken together with results from a previous study finding declines in male lek attendance in response to noise playbacks, these results suggest that chronic noise pollution can cause greater sage-grouse to avoid otherwise suitable habitat, and can cause elevated stress levels in the birds who remain in noisy areas
The Large Quasar Reference Frame (LQRF) - an optical representation of the ICRS
The large number and all-sky distribution of quasars from different surveys,
along with their presence in large, deep astrometric catalogs,enables the
building of an optical materialization of the ICRS following its defining
principles. Namely: that it is kinematically non-rotating with respect to the
ensemble of distant extragalactic objects; aligned with the mean equator and
dynamical equinox of J2000; and realized by a list of adopted coordinates of
extragalatic sources. Starting from the updated and presumably complete LQAC
list of QSOs, the initial optical positions of those quasars are found in the
USNO B1.0 and GSC2.3 catalogs, and from the SDSS DR5. The initial positions are
next placed onto UCAC2-based reference frames, following by an alignment with
the ICRF, to which were added the most precise sources from the VLBA calibrator
list and the VLA calibrator list - when reliable optical counterparts exist.
Finally, the LQRF axes are inspected through spherical harmonics, contemplating
to define right ascension, declination and magnitude terms. The LQRF contains
J2000 referred equatorial coordinates for 100,165 quasars, well represented
across the sky, from -83.5 to +88.5 degrees in declination, and with 10 arcmin
being the average distance between adjacent elements. The global alignment with
the ICRF is 1.5 mas, and the individual position accuracies are represented by
a Poisson distribution that peaks at 139 mas in right ascension and 130 mas in
declination. It is complemented by redshift and photometry information from the
LQAC. The LQRF is designed to be an astrometric frame, but it is also the basis
for the GAIA mission initial quasars' list, and can be used as a test bench for
quasars' space distribution and luminosity function studies.Comment: 23 pages, 23 figures, 6 tables Accepted for publication by Astronomy
& Astrophysics, on 25 May 200
Modeling Collisional Cascades In Debris Disks: The Numerical Method
We develop a new numerical algorithm to model collisional cascades in debris
disks. Because of the large dynamical range in particle masses, we solve the
integro-differential equations describing erosive and catastrophic collisions
in a particle-in-a-box approach, while treating the orbital dynamics of the
particles in an approximate fashion. We employ a new scheme for describing
erosive (cratering) collisions that yields a continuous set of outcomes as a
function of colliding masses. We demonstrate the stability and convergence
characteristics of our algorithm and compare it with other treatments. We show
that incorporating the effects of erosive collisions results in a decay of the
particle distribution that is significantly faster than with purely
catastrophic collisions.Comment: 24 pages, 20 figues, Published in Ap
Tidal torques. A critical review of some techniques
We point out that the MacDonald formula for body-tide torques is valid only
in the zeroth order of e/Q, while its time-average is valid in the first order.
So the formula cannot be used for analysis in higher orders of e/Q. This
necessitates corrections in the theory of tidal despinning and libration
damping.
We prove that when the inclination is low and phase lags are linear in
frequency, the Kaula series is equivalent to a corrected version of the
MacDonald method. The correction to MacDonald's approach would be to set the
phase lag of the integral bulge proportional to the instantaneous frequency.
The equivalence of descriptions gets violated by a nonlinear
frequency-dependence of the lag.
We explain that both the MacDonald- and Darwin-torque-based derivations of
the popular formula for the tidal despinning rate are limited to low
inclinations and to the phase lags being linear in frequency. The
Darwin-torque-based derivation, though, is general enough to accommodate both a
finite inclination and the actual rheology.
Although rheologies with Q scaling as the frequency to a positive power make
the torque diverge at a zero frequency, this reveals not the impossible nature
of the rheology, but a flaw in mathematics, i.e., a common misassumption that
damping merely provides lags to the terms of the Fourier series for the tidal
potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the
magnitudes of the terms, too, get changed. Reinstating of this detail tames the
infinities and rehabilitates the "impossible" scaling law (which happens to be
the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial
text overlap with arXiv:0712.105
Simulations of spiral galaxies with an active potential: molecular cloud formation and gas dynamics
We describe simulations of the response of a gaseous disc to an active spiral
potential. The potential is derived from an N-body calculation and leads to a
multi-armed time-evolving pattern. The gas forms long spiral arms typical of
grand design galaxies, although the spiral pattern is asymmetric. The primary
difference from a grand-design spiral galaxy, which has a consistent 2/4-armed
pattern, is that instead of passing through the spiral arms, gas generally
falls into a developing potential minimum and is released only when the local
minimum dissolves. In this case, the densest gas is coincident with the spiral
potential, rather than offset as in the grand-design spirals. We would there
fore expect no offset between the spiral shock and star formation, and no
obvious co-rotation radius. Spurs which occur in grand-design spirals when
large clumps are sheared off leaving the spiral arms, are rare in the active,
time-evolving spiral reported here. Instead, large branches are formed from
spiral arms when the underlying spiral potential is dissolving due to the
N-body dynamics. We find that the molecular cloud mass spectrum for the active
potential is similar to that for clouds in grand design calculations, depending
primarily on the ambient pressure rather than the nature of the potential. The
largest molecular clouds occur when spiral arms collide, rather than by
agglomeration within a spiral arm.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Orbit Determination with the two-body Integrals. II
The first integrals of the Kepler problem are used to compute preliminary
orbits starting from two short observed arcs of a celestial body, which may be
obtained either by optical or radar observations. We write polynomial equations
for this problem, that we can solve using the powerful tools of computational
Algebra. An algorithm to decide if the linkage of two short arcs is successful,
i.e. if they belong to the same observed body, is proposed and tested
numerically. In this paper we continue the research started in [Gronchi,
Dimare, Milani, 'Orbit determination with the two-body intergrals', CMDA (2010)
107/3, 299-318], where the angular momentum and the energy integrals were used.
A suitable component of the Laplace-Lenz vector in place of the energy turns
out to be convenient, in fact the degree of the resulting system is reduced to
less than half.Comment: 15 pages, 4 figure
Fifty Years of IMF Variation: The Intermediate-Mass Stars
I track the history of star count estimates of the Milky Way field star and
open cluster IMFs, concentrating on the neglected mass range from 1 to 15
M. The prevalent belief in a universal IMF appears to be without
basis for this mass range. Two recent estimates of the field star IMF using
different methods and samples give values of the average logarithmic slope
between -1.7 and -2.1 in the mass range 1.1 to 4 M. Two
older estimates between 2 and 15 M disagree severely; the field IMF
in this range is essentially unknown from star counts. Variations in
among open cluster IMFs in this mass range have not decreased despite numerous
detailed studies, even for studies using homogeneous data and reduction
procedures and including only clusters with a significant mass range. These
cluster variations \textit{might} be due to the combined effects of sampling,
systematic errors, stellar evolution uncertainties, dynamical evolution, and
unresolved binaries. If so, then the cluster data are consistent with a
universal IMF, but are also consistent with sizeable variations. The cluster
data do not allow an estimate of an average IMF or because the average
depends on the choice of weighting procedure and other effects. If the spread
in cluster IMFs is in excess of the effects listed above, real IMF variations
must occur that do not depend much on physical conditions explored so far. The
complexity of the star formation process seen in observations and simulations
suggests that large realization-to-realization differences might be expected,
in which case an individual cluster IMF would be in part the product of
evolutionary contingency in star formation, and the function of interest is the
probability distribution of IMF parameters.Comment: 18 pages, including 4 figures: invited talk presented at the
conference on "IMF@50: The Stellar Initial Mass Function Fifty Years Later"
held at Abbazia di Spineto, Siena, Italy, May 2004; to be published by Kluwer
Academic Publishers, edited by E. Corbelli, F. Palla, and H. Zinnecke
- …