10,409 research outputs found

    A search for 183-GHz emission from water in late-type stars

    Get PDF
    A search was made for 183 GHz line emission from water vapor in the direction of twelve Mira and two semiregular variables. Upper limits to the emission are in the range of 2000 to 5000 Jy. It is estimated that thermal emission from the inner regions of late type stellar envelopes will be on the order of ten Jy. Maser emission, according to one model, would be an order of magnitude stronger. From the limited set sampled, the possibility of very strong maser emission at 183 GHz cannot yet be ruled out

    Helical Tubes in Crowded Environments

    Get PDF
    When placed in a crowded environment, a semi-flexible tube is forced to fold so as to make a more compact shape. One compact shape that often arises in nature is the tight helix, especially when the tube thickness is of comparable size to the tube length. In this paper we use an excluded volume effect to model the effects of crowding. This gives us a measure of compactness for configurations of the tube, which we use to look at structures of the semi-flexible tube that minimize the excluded volume. We focus most of our attention on the helix and which helical geometries are most compact. We found that helices of specific pitch to radius ratio 2.512 to be optimally compact. This is the same geometry that minimizes the global curvature of the curve defining the tube. We further investigate the effects of adding a bending energy or multiple tubes to begin to explore the more complete space of possible geometries a tube could form.Comment: 10 page

    Perturbation study on the spin and charge susceptibilities of the two-dimensional Hubbard model

    Full text link
    We investigate the spin and charge susceptibilities of the two-dimensional Hubbard model based upon the perturbative calculation in the strength of correlation UU. For UU comparable to a bare bandwidth, the charge susceptibility decreases near the half-filling as hole-doping approaches zero. This behavior suggesting the precursor of the Mott-Hubbard gap formation cannot be obtained without the vertex corrections beyond the random phase approximation. In the low-temperature region, the spin susceptibility deviates from the Curie-Weiss-like law and finally turns to decrease with the decrease of temperature. This spin-gap-like behavior is originating from the van Hove singularity in the density of states.Comment: Revtex file + 11 figures, to appear in Phys. Rev.

    Classifying the Isolated Zeros of Asymptotic Gravitational Radiation by Tendex and Vortex Lines

    Get PDF
    A new method to visualize the curvature of spacetime was recently proposed. This method finds the eigenvectors of the "electric" and "magnetic" components of the Weyl tensor and, in analogy to the field lines of electromagnetism, uses the eigenvectors' integral curves to illustrate the spacetime curvature. Here we use this approach, along with well-known topological properties of fields on closed surfaces, to show that an arbitrary, radiating, asymptotically flat spacetime must have points near null infinity where the gravitational radiation vanishes. At the zeros of the gravitational radiation, the field of integral curves develops singular features analogous to the critical points of a vector field. We can, therefore, apply the topological classification of singular points of unoriented lines as a method to describe the radiation field. We provide examples of the structure of these points using linearized gravity and discuss an application to the extreme-kick black-hole-binary merger.Comment: 10 pages, 10 figures. Changed to reflect published version, sign errors fixe

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the νμνe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,

    Pinch Resonances in a Radio Frequency Driven SQUID Ring-Resonator System

    Get PDF
    In this paper we present experimental data on the frequency domain response of a SQUID ring (a Josephson weak link enclosed by a thick superconducting ring) coupled to a radio frequency (rf) tank circuit resonator. We show that with the ring weakly hysteretic the resonance lineshape of this coupled system can display opposed fold bifurcations that appear to touch (pinch off). We demonstrate that for appropriate circuit parameters these pinch off lineshapes exist as solutions of the non-linear equations of motion for the system.Comment: 9 pages, 8 figures, Uploaded as implementing a policy of arXiving old paper

    Comment on "X-ray resonant scattering studies of orbital and charge ordering in Pr1-xCaxMnO3"

    Full text link
    In a recent published paper [Phys. Rev. B 64, 195133 (2001)], Zimmermann et al. present a systematic x-ray scattering study of charge and orbital ordering phenomena in the Pr1-xCaxMnO3 series with x= 0.25, 0.4 and 0.5. They propose that for Ca concentrations x=0.4 and 0.5, the appearance of (0, k+1/2, 0) reflections are originated by the orbital ordering of the eg electrons in the a-b plane while the (0, 2k+1, 0) reflections are due to the charge ordering among the Mn3+ and Mn4+ ions. Moreover, for small Ca concentrations (x<0.3), the orbital ordering is only considered and it occurs at (0, k, 0) reflections. A rigorous analysis of all these resonance reflections will show the inadequacy of the charge-orbital model proposed to explain the experimental results. In addition, this charge-orbital model is highly inconsistent with the electronic balance. On the contrary, these reflections can be easily understood as arising from the anisotropy of charge distribution induced by the presence of local distortions, i.e. due to a structural phase transition.Comment: 10 pages, 2 figures.To be published Phys. Rev.
    corecore