1,637 research outputs found
Problem of oscillating cone in supersonic flow is solved by small perturbation techniques
Small perturbation technique solves the problem of an oscillating cone in supersonic flow. The logic of the program is straightforward, as reflected in the actual instructions for solving the problem
Superconducting instability in the Holstein-Hubbard model: A numerical renormalization group study
We have studied the d-wave pairing-instability in the two-dimensional
Holstein-Hubbard model at the level of a full fluctuation exchange
approximation which treats both Coulomb and electron-phonon (EP) interaction
diagrammatically on an equal footing. A generalized numerical renormalization
group technique has been developed to solve the resulting self-consistent field
equations. The -wave superconducting phase diagram shows an optimal T_c at
electron concentration ~ 0.9 for the purely electronic Hubbard system. The
EP interaction suppresses the d-wave T_c which drops to zero when the
phonon-mediated on-site attraction becomes comparable to the on-site
Coulomb repulsion . The isotope exponent is negative in this model
and small compared to the classical BCS value or compared
to typical observed values in non-optimally doped cuprate superconductors.Comment: 4 pages RevTeX + 3 PS figures include
Effect of a Normal-State Pseudogap on Optical Conductivity in Underdoped Cuprate Superconductors
We calculate the c-axis infrared conductivity in
underdoped cuprate superconductors for spinfluctuation exchange scattering
within the CuO-planes including a phenomenological d-wave pseudogap of
amplitude . For temperatures decreasing below a temperature , a gap for develops in in the
incoherent (diffuse) transmission limit. The resistivity shows 'semiconducting'
behavior, i.e. it increases for low temperatures above the constant behavior
for . We find that the pseudogap structure in the in-plane optical
conductivity is about twice as big as in the interplane conductivity
, in qualitative agreement with experiment. This is a
consequence of the fact that the spinfluctuation exchange interaction is
suppressed at low frequencies as a result of the opening of the pseudogap.
While the c-axis conductivity in the underdoped regime is described best by
incoherent transmission, in the overdoped regime coherent conductance gives a
better description.Comment: to be published in Phys. Rev. B (November 1, 1999
Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point
Spin fluctuations (SF) and SF-mediated superconductivity (SC) in
quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum
critical point (QCP) are investigated by using the self-consistent
renormalization theory for SF and the strong coupling theory for SC. We
introduce a parameter y0 as a measure for the distance from the AFQCP which is
approximately proportional to (x-xc), x being the electron (e) or hole (h)
doping concentration to the half-filled band and xc being the value at the
AFQCP. We present phase diagrams in the T-y0 plane including contour maps of
the AF correlation length and AF and SC transition temperatures TN and Tc,
respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP.
The calculated one-electron spectral density shows a pseudogap in the
high-density-of-states region near (pi,0) below around a certain temperature T*
and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These
results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure
Spin Fluctuation-Induced Superconductivity in Organic Compounds
Spin fluctuation-induced superconductivity in two-dimensional organic
compounds such as \kappa-(ET)_2-X is investigated by using a simplified dimer
Hubbard model with right-angled isosceles triangular lattice (transfer matrices
-\tau, -\tau^\prime). The dynamical susceptiblity and the self-energy are
calculated self-consistently within the fluctuation exchange approximation and
the value for T_c as obtained by solving the linearized Eliashberg-type
equations is in good agreement with experiment. The pairing symmetry is of
d_{x^2-y^2} type. The calculated (U/\tau)-dependence of T_c compares
qualitatively well with the observed pressure dependence of T_c. Varying the
value for \tau^\prime/\tau from 0 to 1 we interpolate between the square
lattice and the regular triangular lattice and find firstly that values of T_c
for \kappa-(ET)_2-X and cuprates scale well and secondly that T_c tends to
decrease with increasing \tau^\prime/\tau and no superconductivity is found for
\tau^\prime/\tau=1, the regular triangular lattice.Comment: 4 pages, 6 eps figures, uses jpsj.st
Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting
The smart metering infrastructure has changed how electricity is measured in
both residential and industrial application. The large amount of data collected
by smart meter per day provides a huge potential for analytics to support the
operation of a smart grid, an example of which is energy demand forecasting.
Short term energy forecasting can be used by utilities to assess if any
forecasted peak energy demand would have an adverse effect on the power system
transmission and distribution infrastructure. It can also help in load
scheduling and demand side management. Many techniques have been proposed to
forecast time series including Support Vector Machine, Artificial Neural
Network and Deep Learning. In this work we use Long Short Term Memory
architecture to forecast 3-day ahead energy demand across each month in the
year. The results show that 3-day ahead demand can be accurately forecasted
with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper
proposes way to quantify the time as a feature to be used in the training phase
which is shown to affect the network performance
Asymmetric Fermi superfluid with different atomic species in a harmonic trap
We study the dilute fermion gas with pairing between two species and unequal
concentrations in a harmonic trap using the mean field theory and the local
density approximation. We found that the system can exhibit a superfluid shell
structure sandwiched by the normal fermions. This superfluid shell structure
occurs if the mass ratio is larger then certain critical value which increases
from the weak-coupling BCS region to the strong-coupling BEC side. In the
strong coupling BEC regime, the radii of superfluid phase are less sensitive to
the mass ratios and are similar to the case of pairing with equal masses.
However, the lighter leftover fermions are easier to mix with the superfluid
core than the heavier ones. A partially polarized superfluid can be found if
the majority fermions are lighter, whereas phase separation is still found if
they are heavier.Comment: 12 pages, 7 figure
Superconductivity in the quasi-two-dimensional Hubbard model
On the basis of spin and pairing fluctuation-exchange approximation, we study
the superconductivity in quasi-two-dimensional Hubbard model. The integral
equations for the Green's function are self-consistently solved by numerical
calculation. Solutions for the order parameter, London penetration depth,
density of states, and transition temperature are obtained. Some of the results
are compared with the experiments for the cuprate high-temperature
superconductors. Numerical techniques are presented in details. With these
techniques, the amount of numerical computation can be greatly reduced.Comment: 17 pages, 13 figure
Reduction of Tc due to Impurities in Cuprate Superconductors
In order to explain how impurities affect the unconventional
superconductivity, we study non-magnetic impurity effect on the transition
temperature using on-site U Hubbard model within a fluctuation exchange (FLEX)
approximation. We find that in appearance, the reduction of Tc roughly
coincides with the well-known Abrikosov-Gor'kov formula. This coincidence
results from the cancellation between two effects; one is the reduction of
attractive force due to randomness, and another is the reduction of the damping
rate of quasi-particle arising from electron interaction. As another problem,
we also study impurity effect on underdoped cuprate as the system showing
pseudogap phenomena. To the aim, we adopt the pairing scenario for the
pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by
impurities. We find that 'pseudogap breaking' by impurities plays the essential
role in underdoped cuprate and suppresses the Tc reduction due to the
superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS
- …