237 research outputs found

    Estradiol, Progesterone, and Transforming Growth Factor α Regulate Insulin-Like Growth Factor Binding Protein-3 (IGFBP3) Expression in Mouse Endometrial Cells

    Get PDF
    Insulin-like growth factor 1 (IGF1) Is Involved in the proliferation of mouse and rat endometrial cells in a paracrine or autocrine manner. Insulin-like growth factor binding protein-3 (IGFBP3) modulates actions of IGFs directly or indirectly. The present study aimed to determine whether IGFBP3 is Involved In the regulation of proliferation of mouse endometrial cells. Mouse endometrial epithelial cells and stromal cells were isolated, and cultured In a serum free medium. IGF1 stimulated DNA synthesis by endometrial epithelial and stromal cells, and IGFBP3 Inhibited IGF1-induced DNA synthesis. Estradiol-17 beta (E2) decreased the Igfbp3 mRNA level in endometrial stromal cells, whereas It Increased the Igf1 mRNA level. Transforming growth factor alpha (TGF alpha) significantly decreased IGFBP3 expression at both the mRNA and secreted protein levels in endometrial stromal cells. Progesterone (134) did not affect the E2-induced down-regulation of Igfbp3 mRNA expression in endometrial stromal cells, although P4 alone increased Igfbp3 mRNA levels. The present findings suggest that in mouse endometrial stromal cells E2 enhances IGF1 action through enhancement of IGF1 synthesis and reduction of IGFBP3 synthesis, and that TGF alpha affects IGF1 actions through modulation of IGFBP3 levels

    Orbital-selective confinement effect of Ru 4d4d orbitals in SrRuO3_3 ultrathin film

    Get PDF
    The electronic structure of SrRuO3_3 thin film with thickness from 50 to 1 unit cell (u.c.) is investigated via the resonant inelastic x-ray scattering (RIXS) technique at the O K-edge to unravel the intriguing interplay of orbital and charge degrees of freedom. We found that orbital-selective quantum confinement effect (QCE) induces the splitting of Ru 4d4d orbitals. At the same time, we observed a clear suppression of the electron-hole continuum across the metal-to-insulator transition (MIT) occurring at the 4 u.c. sample. From these two clear observations we conclude that QCE gives rise to a Mott insulating phase in ultrathin SrRuO3_3 films. Our interpretation of the RIXS spectra is supported by the configuration interaction calculations of RuO6_6 clusters.Comment: 7 pages, 7 figure

    Orbital Wave and its Observation in Orbital Ordered Titanates and Vanadates

    Get PDF
    We present a theory of the collective orbital excitation termed orbital wave in perovskite titanates and vanadates with the triply degenerate t2gt_{2g} orbitals. The dispersion relations of the orbital waves for the orbital ordered LaVO3_3, YVO3_3 and YTiO3_3 are examined in the effective spin-orbital coupled Hamiltonians associated with the Jahn-Teller type couplings. We propose possible scattering processes for the Raman and inelastic neutron scatterings from the orbital wave and calculate the scattering spectra for titanates and vanadates. It is found that both the excitation spectra and the observation methods of the orbital wave are distinct qualitatively from those for the ege_g orbital ordered systems.Comment: 9 pages, 7 figure

    Polarization Dependence of Anomalous X-ray Scattering in Orbital Ordered Manganites

    Full text link
    In order to determine types of the orbital ordering in manganites, we study theoretically the polarization dependence of the anomalous X-ray scattering which is caused by the anisotropy of the scattering factor. The general formulae of the scattering intensity in the experimental optical system is derived and the atomic scattering factor is calculated in the microscopic electronic model. By using the results, the X-ray scattering intensity in several types of the orbital ordering is numerically calculated as a function of azimuthal and analyzer angles.Comment: 9 pages, 7 figure

    Temperature dependence of the resistivity in the double-exchange model

    Full text link
    The resistivity around the ferromagnetic transition temperature in the double exchange model is studied by the Schwinger boson approach. The spatial spin correlation responsible for scattering of conduction electrons are taken into account by adopting the memory function formalism. Although the correlation shows a peak lower than the transition temperature, the resistivity in the ferromagnetic state monotonically increases with increasing temperature due to a variation of the electronic state of the conduction electron. In the paramagnetic state, the resistivity is dominated by the short range correlation of scattering and is almost independent of the temperature. It is attributed to a cancellation between the nearest-neighbor spin correlation, the fermion bandwidth, and the fermion kinetic energy. This result implies the importance of the temperature dependence of the electronic states of the conduction electron as well as the localized spin states in both ferromagnetic and paramagnetic phases.Comment: RevTex, 4 pages, 4 PostScript figures, To appear in Phys. Rev.

    Theory of Orbital Ordering, Fluctuation and Resonant X-ray Scattering in Manganites

    Full text link
    A theory of resonant x-ray scattering in perovskite manganites is developed by applying the group theory to the correlation functions of the pseudospin operators for the orbital degree of freedom. It is shown that static and dynamical informations of the orbital state are directly obtained from the elastic, diffuse and inelastic scatterings due to the tensor character of the scattering factor. We propose that the interaction and its anisotropy between orbitals are directly identified by the intensity contour of the diffuse scattering in the momentum space.Comment: 4 pages, 1 figur

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances

    Resonant X-ray Scattering in Manganites - Study of Orbital Degree of Freedom -

    Full text link
    Orbital degree of freedom of electrons and its interplay with spin, charge and lattice degrees of freedom are one of the central issues in colossal magnetoresistive manganites. The orbital degree of freedom has until recently remained hidden, since it does not couple directly to most of experimental probes. Development of synchrotron light sources has changed the situation; by the resonant x-ray scattering (RXS) technique the orbital ordering has successfully been observed . In this article, we review progress in the recent studies of RXS in manganites. We start with a detailed review of the RXS experiments applied to the orbital ordered manganites and other correlated electron systems. We derive the scattering cross section of RXS where the tensor character of the atomic scattering factor (ASF) with respect to the x-ray polarization is stressed. Microscopic mechanisms of the anisotropic tensor character of ASF is introduced and numerical results of ASF and the scattering intensity are presented. The azimuthal angle scan is a unique experimental method to identify RXS from the orbital degree of freedom. A theory of the azimuthal angle and polarization dependence of the RXS intensity is presented. The theoretical results show good agreement with the experiments in manganites. Apart from the microscopic description of ASF, a theoretical framework of RXS to relate directly to the 3d orbital is presented. The scattering cross section is represented by the correlation function of the pseudo-spin operator for the orbital degree of freedom. A theory is extended to the resonant inelastic x-ray scattering and methods to observe excitations of the orbital degree of freedom are proposed.Comment: 47 pages, 24 figures, submitted to Rep. Prog. Phy

    Interplay of Electron-Phonon Interaction and Electron Correlation in High Temperature Superconductivity

    Get PDF
    We study the electron-phonon interaction in the strongly correlated superconducting cuprates. Two types of the electron-phonon interactions are introduced in the tJt-J model; the diagonal and off-diagonal interactions which modify the formation energy of the Zhang-Rice singlet and its transfer integral, respectively. The characteristic phonon-momentum (q)(\vec q) and electron-momentum (k)(\vec k) dependence resulted from the off-diagonal coupling can explain a variety of experiments. The vertex correction for the electron-phonon interaction is formulated in the SU(2) slave-boson theory by taking into account the collective modes in the superconducting ground states. It is shown that the vertex correction enhances the attractive potential for the d-wave paring mediated by phonon with q=(π(1δ),0)\vec q=(\pi(1-\delta), 0) around δ0.3\delta \cong 0.3 which corresponds to the half-breathing mode of the oxygen motion.Comment: 14 pages, 13 figure

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
    corecore