1,599 research outputs found

    Epithelial to mesenchymal transition: New and old insights from the classical neural crest model

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is an important event converting compact and ordered epithelial cells into migratory mesenchymal cells. Given the molecular and cellular similarities between pathological and developmental EMTs, studying this event during neural crest development offers and excellent in vivo model for understanding the mechanisms underlying this process. Here, we review new and old insight into neural crest EMT in search of commonalities with cancer progression that might aid in the design of specific therapeutic prevention

    A PHD12–Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition

    Get PDF
    Neural crest cells form within the neural tube and then undergo an epithelial to mesenchymal transition (EMT) to initiate migration to distant locations. The transcriptional repressor Snail2 has been implicated in neural crest EMT via an as of yet unknown mechanism. We report that the adaptor protein PHD12 is highly expressed before neural crest EMT. At cranial levels, loss of PHD12 phenocopies Snail2 knockdown, preventing transcriptional shutdown of the adhesion molecule Cad6b (Cadherin6b), thereby inhibiting neural crest emigration. Although not directly binding to each other, PHD12 and Snail2 both directly interact with Sin3A in vivo, which in turn complexes with histone deacetylase (HDAC). Chromatin immunoprecipitation revealed that PHD12 is recruited to the Cad6b promoter during neural crest EMT. Consistent with this, lysines on histone 3 at the Cad6b promoter are hyperacetylated before neural crest emigration, correlating with active transcription, but deacetylated during EMT, reflecting the repressive state. Knockdown of either PHD12 or Snail2 prevents Cad6b promoter deacetylation. Collectively, the results show that PHD12 interacts directly with Sin3A/HDAC, which in turn interacts with Snail2, forming a complex at the Cad6b promoter and thus revealing the nature of the in vivo Snail repressive complex that regulates neural crest EMT

    Infrared remote sensing of Earth degassing - Ground study

    Get PDF
    Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of gas vents/springs within large areas and short times. This article describes preparatory investigations for which emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas within the recorded thermal images of the scene. The investigations are aiming at studies to be performed later in the Western Bohemia (Czech Republic) earthquake swarm region where especially CO2 of magmatic origin from European SubContinental Mantle (ESCM) emanates

    Epigenetic regulation in neural crest development

    Get PDF
    The neural crest is a migratory and multipotent cell population that plays a crucial role in many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases

    Group Theoretical Quantization of a Phase Space S1xR+S^{1} x R^{+} and the Mass Spectrum of Schwarzschild Black Holes in D Space-Time Dimensions

    Get PDF
    The symplectic reduction of pure spherically symmetric (Schwarzschild) classical gravity in D space-time dimensions yields a 2-dimensional phase space of observables consisting of the Mass M (>0) and a canonically conjugate (Killing) time variable T. Imposing (mass-dependent) periodic boundary conditions in time on the associated quantum mechanical plane waves which represent the Schwarzschild system in the period just before or during the formation of a black hole, yields an energy spectrum of the hole which realizes the old Bekenstein postulate that the quanta of the horizon A_{D-2} are multiples of a basic area quantum. In the present paper it is shown that the phase space of such a Schwarzschild black hole in D space-time dimensions is symplectomorphic to a symplectic manifold S={(phi in R mod 2 pi, p = A_{D-2} >0)} with the symplectic form d phi wedge d p. As the action of the group SO_+(1,2) on that manifold is transitive, effective and Hamiltonian, it can be used for a group theoretical quantization of the system. The area operator p for the horizon corresponds to the generator of the compact subgroup SO(2) and becomes quantized accordingly: The positive discrete series of the irreducible unitary representations of SO_+(1,2) yields an (horizon) area spectrum proportional k+n, where k = 1,2,... characterizes the representation and n = 0,1,2,... the number of area quanta. If one employs the unitary representations of the universal covering group of SO_+(1,2) the number k can take any fixed positive real value (theta-parameter). The unitary representations of the positive discrete series provide concrete Hilbert spaces for quantum Schwarzschild black holes

    Value of crowd‐based water level class observations for hydrological model calibration

    Full text link
    While hydrological models generally rely on continuous streamflow data for calibration, previous studies have shown that a few measurements can be sufficient to constrain model parameters. Other studies have shown that continuous water level or water level class (WL‐class) data can be informative for model calibration. In this study, we combined these approaches and explored the potential value of a limited number of WL‐class observations for calibration of a bucket‐type runoff model (HBV) for four catchments in Switzerland. We generated synthetic data to represent citizen science data and examined the effects of the temporal resolution of the observations, the numbers of WL‐classes, and the magnitude of the errors in the WL‐class data on the model validation performance. Our results indicate that on average one observation per week for a one‐year period can significantly improve model performance compared to the situation without any streamflow data. Furthermore, the validation performance for model parameters calibrated with WL‐class observations was similar to the performance of the calibration with precise water level measurements. The number of WL‐classes did not influence the validation performance noticeably when at least four WL‐classes were used. The impact of typical errors for citizen‐science‐based estimates of WL‐classes on the model performance was small. These results are encouraging for citizen science projects where citizens observe water levels for otherwise ungauged streams using virtual or physical staff gauges

    Accuracy of crowdsourced streamflow and stream level class estimates

    Full text link
    Streamflow data are important for river management and the calibration of hydrological models. However, such data are only available for gauged catchments. Citizen science offers an alternative data source, and can be used to estimate streamflow at ungauged sites. We evaluated the accuracy of crowdsourced streamflow estimates for 10 streams in Switzerland by asking citizens to estimate streamflow either directly, or based on the estimated width, depth and velocity of the stream. Additionally, we asked them to estimate the stream level class by comparing the current stream level with a picture that included a virtual staff gauge. To compare the different estimates, the stream level class estimates were converted into streamflow. The results indicate that stream level classes were estimated more accurately than streamflow, and more accurately represented high and low flow conditions. Based on this result, we suggest that citizen science projects focus on stream level class estimates instead of streamflow estimates

    Ispitivanja statičke kompresije i rezonantne vibracije celularnih materijala dobivenih gravitacijskim sinterovanjem šupljih brončanih kugli

    Get PDF
    The cylindrical and rod-shaped specimens were prepared by gravity sintering from Cu-Sn hollow spheres. On these samples, both static compression tests and measurements of resonance frequencies were performed. The compressive stress-strain curves revealed the features characteristic for a closed-cell ductile cellular solid. The removal of in general open porosity among loosely packed closed metallic hollow spheres was recognized as the principal mode of plastic deformation. The approximative effective moduli of elasticity were determined for cellular materials under consideration by means of the measurements of resonance frequencies on rod-shaped specimens.Cilindrični i šipkasti uzorci su pripremljeni gravitacionim sinterovanjem šupljih Cu-Sn kugli. Na tim uzorcima su provedena ispitivanja statičke kompresije i mjerenja rezonantnih frekvencija. Krivulja naprezanje-rastezanje nam pokazuje svojstva karakteristična za plastične celularne krute materijale sa zatvorenim ćelijama. Uklanjanje uglavnom otvorene povezanosti među labavo povezanim šupljim metalnim kuglama prepoznajemo kao glavni način plastične deformacije. Za celularne materijale koji se razmatraju određeni su približno učinkoviti moduli elastičnosti mjerenjem frekvencija rezonancije na šipkasto oblikovanim uzorcima
    corecore