37 research outputs found

    Conductivity, Viscosity, Spectroscopic Properties of Organic Sulfonic Acid solutions in Ionic Liquids

    Get PDF
    Sulfonic acids in ionic liquids (ILs) are used as catalysts, electrolytes, and solutions for metal extraction. The sulfonic acid ionization states and the solution acid/base properties are critical for these applications. Methane sulfonic acid (MSA) and camphor sulfonic acid (CSA) are dissolved in several IL solutions with and without bis(trifluoromethanesulfonyl)imine (HTFSI). The solutions demonstrated higher conductivities and lower viscosities. Through calorimetry and temperature-dependent conductivity analysis, we found that adding MSA to the IL solution may change both the ion migration activation energy and the number of “free” charge carriers. However, no significant acid ionization or proton transfer was observed in the IL solutions. Raman and IR spectroscopy with computational simulations suggest that the HTFSI forms dimers in the solutions with an N-H-N “bridged” structure, while MSA does not perturb this hydrogen ion solvation structure in the IL solutions. CSA has a lower solubility in the ILs and reduced the IL solution conductivity. However, in IL solutions containing 0.4 M or higher concentration of HTFSI, CSA addition increased the conductivity at low CSA concentrations and reduced it at high concentrations, which may indicate a synergistic effect

    What does regional studies study? From subnational to supra-national regional spaces or Grossraum of sovereign governance

    Get PDF
    This article makes a case for expanding the scope of current versions of “regional studies” to include greater emphasis upon transnational regions as of equal if not greater importance compared with an exclusive focus upon sub-national regions. The latter more restrictive approach is typically predicated on the continued centrality of state borders against which the dominant notion of regions as subnational entities is constituted and reiterated. Drawing upon a case study of the African Union our study provides a framework, a critically revised Grossraum theory, for addressing the emergence of a new pluralistic and multipolar world order characterised by supra-national regions and regional organizations. Traditional Schmittian notions of Grossraum are shown to be in need of substantial revision before they are able to adequately accommodate and explain the empirical details of our case study

    Vampires in the village Žrnovo on the island of Korčula: following an archival document from the 18th century

    Get PDF
    Središnja tema rada usmjerena je na raščlambu spisa pohranjenog u Državnom arhivu u Mlecima (fond: Capi del Consiglio de’ Dieci: Lettere di Rettori e di altre cariche) koji se odnosi na događaj iz 1748. godine u korčulanskom selu Žrnovo, kada su mještani – vjerujući da su se pojavili vampiri – oskvrnuli nekoliko mjesnih grobova. U radu se podrobno iznose osnovni podaci iz spisa te rečeni događaj analizira u širem društvenom kontekstu i prate se lokalna vjerovanja.The main interest of this essay is the analysis of the document from the State Archive in Venice (file: Capi del Consiglio de’ Dieci: Lettere di Rettori e di altre cariche) which is connected with the episode from 1748 when the inhabitants of the village Žrnove on the island of Korčula in Croatia opened tombs on the local cemetery in the fear of the vampires treating. This essay try to show some social circumstances connected with this event as well as a local vernacular tradition concerning superstitions

    Pollution Reduction System that Generates Profits (Cascading Closed Loop Cycle - CCLC)

    No full text
    WOW Energy Inc. (WOW) recently received notification from the patent office that its patent claims for the Cascading Closed Loop Cycle (CCLC) were valid for converting waste heat to electricity in a process using standard off-the-shelf components. These

    Final Flue Gas Cleaning (FFGC)

    No full text

    Optimale Bedingungen f�r die Gewinnung von radioaktivem Tabakmosaikvirus

    No full text

    Nanosecond - Cw Visible-Ir All-Optical Switching And Nonlinear Transmission With A Nonlinear Organic Optical Liquid In Bulk And Guided Wave Geometry

    No full text
    Passive all-optical protection against such multiple time-scales and extremely broadband intense light sources is rather challenging due to the fact that an optical limiting mechanism that is efficient in one time scale usually become rather inefficient in another time scale. Nonlinear absorptions such as Two-Photon absorptions [TPA] and Excited State absorption [ESA] that are effective for limiting nanosecond laser pulses simply do not work in the microseconds and longer time scales as a result of the reduction in power/intensity for the same energy flux. In these time scales, a variety of approaches and materials, including dye-doped aligned nematic liquid crystals, have emerged as promising alternatives [1, 2]. In this presentation, we describe another promising organic material that enables all-optical switching in an extremely wide time scales spanning sub-nanoseconds to cw regime - a nonlinear neat organic liquid (L34) in bulk or wave-guided [fiber core] structure. In the visible spectrum [400 -700 nm], quantitative z-scan and pump-probe techniques [3,4] have shown that in the sub-nanosecond time scales, the dominant nonlinear absorption processes are two-photon coupled to excited state absorption processes characterized by an intrinsic two photon absorption coefficient of ∼5 cm/GW, and an intensity dependent effective two-photon absorption coefficient that can be over 200 cm/GW. For longer time scales, the transparency of the liquid allows doping with appropriate absorbers to generate efficient thermal/density and nonlinear scattering effects [as well as guided mode extinction in fiber geometry] for all-optical switching operations. Accordingly, one may envision single material constituent device capable of all-time scale optical switching applications. Fig. 1 and 2 illustrate the exemplary \u27performance\u27 characteristics of the liquid with visible lasers. The nonlinear absorption properties of L34 for nanosecond laser for 532 nm nanosecond lasers pulses are shown in Fig. 1; the liquid is highly transparent [over 98%] at low input energy. As a result of the multi-photon absorption, the transmission at high input intensity is severely clamped. As previously reported [3], fiber array made with L34 cores are capable of sub-μJ limiting threshold and clamped transmission below the MPE [Maximum Permissible Exposure] value of \u3c 1 μJ. In microseconds and longer time scales optical switching exemplary results are shown in Fig. 2 for three detection configurations [Bulk: Open aperture; closed aperture. Fiber: Open aperture]. In this case, milliseconds [488 nm] laser square pulses derived from a cw laser with an electronic shutter are used. All detection configurations exhibit \u27classic\u27 limiting behavior, with differing thresholds and clamped transmission values. Lower clamped transmission and thresholds are obtained for the case where the liquid is used as the guiding core of a fiber array, or a bulk sample with \u27Closed Aperture\u27 detection. We have performed similar experiments with microsecond laser pulses [Alexandrite laser at 750 nm] and cw - microseconds 1550 nm lasers and obtained similar switching performance. With optimization of various configuration parameters and material properties, including use of appropriate dopants, one can envision several organic liquid based devices with extraordinary performance characteristics. © 2007 IEEE
    corecore