289 research outputs found

    A first-principles comparison of the electronic properties of MgC_{y}Ni_{3} and ZnC_{y}Ni_{3} alloys

    Full text link
    First-principles, density-functional-based electronic structure calculations are employed to study the changes in the electronic properties of ZnC_{y}Ni_{3} and MgC_{y}Ni_{3} using the Korringa-Kohn-Rostoker coherent-potential approximation method in the atomic sphere approximation (KKR-ASA CPA). As a function of decreasing C at%, we find a steady decrease in the lattice constant and bulk modulus in either alloys. However, the pressure derivative of the bulk modulus displays an opposite trend. Following the Debye model, which relates the pressure derivative of the bulk modulus with the average phonon frequency of the crystal, it can thus be argued that ZnCNi_{3} and its disordered alloys posses a different phonon spectra in comparison to its MgCNi_{3} counterparts. This is further justified by the marked similarity we find in the electronic structure properties such as the variation in the density of states and the Hopfield parameters calculated for these alloys. The effects on the equation of state parameters and the density of states at the Fermi energy, for partial replacement of Mg by Zn are also discussed.Comment: 19 pages, 15 figure

    Last Glacial Maximum active layer thickness in Western Europe, and the issue of ‘tundra gleys’ in loess sequences

    Get PDF
    Late Marine Isotope Stage (MIS) 3 and MIS 2 loess–palaeosol sequences in Western Europe comprise alternating loess layer and 3- to 30-cm-thick bleached soil horizons with Fe–Mn oxide precipitations, which are usually interpreted as waterlogged active layers and referred to as ‘tundra gleys’. Active layer thickness data derived from a regional climate model simulation and the fossils (shells, earthworm granules) found in ‘tundra gleys’ argue against such an assumption. Most of these horizons better correspond to Fe-depleted, slightly humic topsoil horizons or subsurface eluvial horizons and should be referred to as (incipient) Ag or Eg horizons. They formed during climate ameliorations associated with vegetation (cryptogams, herbs) development, possibly limited by long-lasting snow cover. Strong mixing usually occurred in these horizons due to the activity of anecic earthworms and frost activity

    Effect of carbon addition on the single crystalline magnetostriction of Fe-X (X = Al and Ga) alloys

    Get PDF
    The effect of carbon addition on the magnetostriction of Fe–Ga and Fe–Al alloys was investigated and is summarized in this study. It was found that the addition of carbon generally increased the magnetostriction over binary alloys of Fe–Ga and Fe–Al systems. The formation of carbide in the Fe–Ga–C alloys with a composition near D03 phase region decreased the magnetostriction drastically. Fe–Al–C and Fe–Ga–C alloys responded differently to thermal treatments; the magnetostriction in the quenched Fe–Al–C alloys is equal to or slightly lower than that of the slow cooled as is observed in binary Fe–Al alloy; in contrast, the magnetostriction is generally higher in quenched Fe–Ga–C alloys than slow cooled condition, consistent with the behavior of binary alloys of Fe–Ga. A significant increase in magnetostriction between 25% and 165% depending on the phase region in Fe–Ga–C alloys by quenching was observed in the A2+D03 two-phase region and D03 single phase region

    A new perspective on permafrost boundaries in France during the Last Glacial Maximum

    Get PDF
    During the Last Glacial Maximum (LGM), a very cold and dry period around 26.5–19 kyr BP, permafrost was widespread across Europe. In this work, we explore the possible benefit of using regional climate model data to improve the permafrost representation in France, decipher how the atmospheric circulation affects the permafrost boundaries in the models, and test the role of ground thermal contraction cracking in edge development during the LGM. With these aims, criteria for possible thermal contraction cracking of the ground are applied to climate model data for the first time. Our results show that the permafrost extent and ground cracking regions deviate from proxy evidence when the simulated large-scale circulation in both global and re-gional climate models favours prevailing westerly winds. A colder and, with regard to proxy data, more realistic version of the LGM climate is achieved given more frequent easterly winds conditions. Given the appropriate forcing, an added value of the regional climate model simulation can be achieved in representing permafrost and ground thermal contraction cracking. Furthermore, the model data provide evidence that thermal contraction cracking occurred in Europe during the LGM in a wide latitudinal band south of the probable permafrost border, in agreement with field data analysis. This enables the reconsideration of the role of sand-wedge casts to identify past permafrost regions

    Movies of cellular and sub-cellular motion by digital holographic microscopy

    Get PDF
    BACKGROUND: Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. METHODS: A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. RESULTS: Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable focus, so that the moving object can be accurately tracked with a reconstruction rate of 300ms for each hologram. The holographic movies show paramecium swimming among other microbes as well as displaying some of their intracellular processes. A time lapse movie is also shown for fibroblast cells in the process of migration. CONCLUSION: Digital holography and movies of digital holography are seen to be useful new tools for visualization of dynamic processes in biological microscopy. Phase imaging digital holography is a promising technique in terms of the lack of coherent noise and the precision with which the optical thickness of a sample can be profiled, which can lead to images with an axial resolution of a few nanometres

    Application of Autologous Bone Marrow Derived Mesenchymal Stem Cells to an Ovine Model of Growth Plate Cartilage Injury

    Get PDF
    Injury to growth plate cartilage in children can lead to bone bridge formation and result in bone growth deformities, a significant clinical problem currently lacking biological treatment. Mesenchymal stem/stromal cells (MSC) offer a promising therapeutic option for regeneration of damaged cartilage, due to their self renewing and multi-lineage differentiation attributes. Although some small animal model studies highlight the therapeutic potential of MSC for growth plate repair, translational research in large animal models, which more closely resemble the human condition, are lacking. Our laboratory has recently characterised MSCs derived from ovine bone marrow, and demonstrated these cells form cartilage-like tissue when transplanted within the gelatin sponge, Gelfoam, in vivo. In the current study, autologous bone marrow MSC were seeded into Gelfoam scaffold containing TGF-β1, and transplanted into a surgically created defect of the proximal ovine tibial growth plate. Examination of implants at 5 week post-operatively revealed transplanted autologous MSC failed to form new cartilage structure at the defect site, but contributed to an increase in formation of a dense fibrous tissue. Importantly, the extent of osteogenesis was diminished, and bone bridge formation was not accelerated due to transplantation of MSCs or the gelatin scaffold. The current study represents the first work that has utilised this ovine large animal model to investigate whether autologous bone marrow derived MSC can be used to initiate regeneration at the injured growth plate

    Joint analysis of the energy spectrum of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory and the Telescope Array

    Get PDF
    The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both Observatories ([−15,+24] degrees in declination) can be used to cross-calibrate the two spectra. The Auger-TA energy spectrum working group was organized in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. We revisit this issue to understand its origin by examining the systematic uncertainties, statistical effects, and other possibilities. We will also discuss the differences in the spectra in different declination bands and a new feature in the spectrum recently reported by the Auger Collaboration

    The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors

    Get PDF
    The sources of ultra-high-energy cosmic rays are still unknown, but assuming standard physics, they are expected to lie within a few hundred megaparsecs from us. Indeed, over cosmological distances cosmic rays lose energy to interactions with background photons, at a rate depending on their mass number and energy and properties of photonuclear interactions and photon backgrounds. The universe is not homogeneous at such scales, hence the distribution of the arrival directions of cosmic rays is expected to reflect the inhomogeneities in the distribution of galaxies; the shorter the energy loss lengths, the stronger the expected anisotropies. Galactic and intergalactic magnetic fields can blur and distort the picture, but the magnitudes of the largest-scale anisotropies, namely the dipole and quadrupole moments, are the most robust to their effects. Measuring them with no bias regardless of any higher-order multipoles is not possible except with full-sky coverage. In this work, we achieve this in three energy ranges (approximately 8--16 EeV, 16--32 EeV, and 32--∞ EeV) by combining surface-detector data collected at the Pierre Auger Observatory until 2020 and at the Telescope Array (TA) until 2019, before the completion of the upgrades of the arrays with new scintillator detectors. We find that the full-sky coverage achieved by combining Auger and TA data reduces the uncertainties on the north-south components of the dipole and quadrupole in half compared to Auger-only results

    Joint analysis of the energy spectrum of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory and the Telescope Array

    Get PDF
    The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both Observatories ([-15, +24] degrees in declination) can be used to cross-calibrate the two spectra. The Auger-TA energy spectrum working group was organized in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. We revisit this issue to understand its origin by examining the systematic uncertainties, statistical effects, and other possibilities. We will also discuss the differences in the spectra in different declination bands and a new feature in the spectrum recently reported by the Auger Collaboration
    corecore