328 research outputs found

    A method for determining local elastoplastic stress and strain in metallurgically bonded notched laminates subjected to a loading cycle

    Get PDF
    A semianalytical method was developed for determining elastoplastic cyclic stresses and strains at notch roots in metallurgically bonded metal laminates. The method is based on the Neuber equation, which was used with an effective stress-strain curve for the laminate. It was applied to laminates containing a circular hole which were subjected to one cycle of reversed loading. The laminates consisted of two elasto-perfectly-plastic materials with different yield strengths and with either equal or different Young's moduli. A laminate of high-strength titanium alloy with alternate layers of commercially pure titanium was also analyzed. The accuracy of the method was evaluated by comparing the stresses and strains with those calculated from a finite-element analysis. The results estimated by the simple method based on the Neuber equation agreed closely with the results computed from the more elaborate finite-element analysis

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    Get PDF
    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cance

    Reduced expression of tissue factor pathway inhibitor-2 contributes to apoptosis and angiogenesis in cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue factor pathway inhibitor-2 (TFPI-2) is an extracellular matrix associated broad-spectrum Kunitz-type serine proteinase inhibitor. Recently, down regulation of TFPI-2 was suggested to be involved in tumor invasion and metastasis in some cancers.</p> <p>Methods</p> <p>This study involved 12 normal cervical squamous epithelia, 48 cervical intraepithelial neoplasia (CIN), and 68 cervical cancer. The expression of TFPI-2, Ki-67 and vascular endothelial growth factor (VEGF) were investigated by immunohistochemistry staining. The apoptolic index(AI) was determined with an in situ end-labeling assay(TUNEL). And the marker of CD34 staining was used as an indicator of microvessel density (MVD).</p> <p>Results</p> <p>TFPI-2 expression has a decreasing trend with the progression of cervical cancer and was significantly correlated with FIGO stage, lymph node metastasis and HPV infection. In addition, there were significant positive correlations between the grading of TFPI-2 expression and AI(P = 0.004). In contrast, the expression of TFPI-2 and VEGF or MVD was negatively correlated (both p < 0.001). However, we did not establish any significant correlation between Ki-67 and TFPI-2 expression in cervical cancer.</p> <p>Conclusions</p> <p>The results suggested that the expression of TFPI-2 had a decreasing trend with tumor progression of cervical cancer. There was a close association between the expression of TFPI-2 and tumor cell apoptosis and angiogenesis in patients with cervical cancer. TFPI-2 may play an inhibitive role during the development of cervical cancer.</p

    Endothelial and Smooth Muscle Cells from Abdominal Aortic Aneurysm Have Increased Oxidative Stress and Telomere Attrition

    Get PDF
    Background: Abdominal aortic aneurysm (AAA) is a complex multi-factorial disease with life-threatening complications. AAA is typically asymptomatic and its rupture is associated with high mortality rate. Both environmental and genetic risk factors are involved in AAA pathogenesis. Aim of this study was to investigate telomere length (TL) and oxidative DNA damage in paired blood lymphocytes, aortic endothelial cells (EC), vascular smooth muscle cells (VSMC), and epidermal cells from patients with AAA in comparison with matched controls. Methods: TL was assessed using a modification of quantitative (Q)-FISH in combination with immunofluorescence for CD31 or α-smooth muscle actin to detect EC and VSMC, respectively. Oxidative DNA damage was investigated by immunofluorescence staining for 7, 8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG). Results and Conclusions: Telomeres were found to be significantly shortened in EC, VSMC, keratinocytes and blood lymphocytes from AAA patients compared to matched controls. 8-oxo-dG immunoreactivity, indicative of oxidative DNA damage, was detected at higher levels in all of the above cell types from AAA patients compared to matched controls. Increased DNA double strand breaks were detected in AAA patients vs controls by nuclear staining for γ-H2AX histone. There was statistically significant inverse correlation between TL and accumulation of oxidative DNA damage in blood lymphocytes from AAA patients. This study shows for the first time that EC and VSMC from AAA have shortened telomeres and oxidative DNA damage. Similar findings were obtained with circulating lymphocytes and keratinocytes, indicating the systemic nature of the disease. Potential translational implications of these findings are discussed. © 2012 Cafueri et al

    Tumor Associated Stromal Cells Play a Critical Role on the Outcome of the Oncolytic Efficacy of Conditionally Replicative Adenoviruses

    Get PDF
    The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd) is still limited by the inefficient infection of the tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor-associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(I)-F512-TK, respectively) exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co-administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(I)-F512-TK on SPARC-negative MIA PaCa-2 pancreatic cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses
    corecore