185 research outputs found

    Efficient and Accurate Linear Algebraic Methods for Large-scale Electronic Structure Calculations with Non-orthogonal Atomic Orbitals

    Full text link
    The need for large-scale electronic structure calculations arises recently in the field of material physics and efficient and accurate algebraic methods for large simultaneous linear equations become greatly important. We investigate the generalized shifted conjugate orthogonal conjugate gradient method, the generalized Lanczos method and the generalized Arnoldi method. They are the solver methods of large simultaneous linear equations of one-electron Schr\"odinger equation and maps the whole Hilbert space to a small subspace called the Krylov subspace. These methods are applied to systems of fcc Au with the NRL tight-binding Hamiltonian (Phys. Rev. B {\bf 63}, 195101 (2001)). We compare results by these methods and the exact calculation and show them equally accurate. The system size dependence of the CPU time is also discussed. The generalized Lanczos method and the generalized Arnoldi method are the most suitable for the large-scale molecular dynamics simulations from the view point of CPU time and memory size.Comment: 13pages, 7figure

    Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory

    Full text link
    A linear algebraic method named the shifted conjugate-orthogonal-conjugate-gradient method is introduced for large-scale electronic structure calculation. The method gives an iterative solver algorithm of the Green's function and the density matrix without calculating eigenstates.The problem is reduced to independent linear equations at many energy points and the calculation is actually carried out only for a single energy point. The method is robust against the round-off error and the calculation can reach the machine accuracy. With the observation of residual vectors, the accuracy can be controlled, microscopically, independently for each element of the Green's function, and dynamically, at each step in dynamical simulations. The method is applied to both semiconductor and metal.Comment: 10 pages, 9 figures. To appear in Phys. Rev. B. A PDF file with better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses

    Primary cardiac osteosarcoma in a 42-year-old woman

    Get PDF
    We describe here a 42-year-old woman who was admitted to hospital with a pedunculated mass in her left atrium. She was diagnosed with a primary cardiac osteosarcoma with special immunohistochemical characteristics. Echocardiography and computed tomography can be used to differentiate cardiac osteosarcomas from routine intracardiac tumors. The patient was treated by surgical removal of the mass. Two years later, she has shown no evidence of disease recurrence. We discuss primary osteosarcomas in the cardiac cavity and their management

    Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mild hypophosphatasia (HPP) phenotype may result from <it>ALPL </it>gene mutations exhibiting residual alkaline phosphatase activity or from severe heterozygous mutations exhibiting a dominant negative effect. In order to determine the cause of our failure to detect a second mutation by sequencing in patients with mild HPP and carrying on a single heterozygous mutation, we tested the possible dominant effect of 35 mutations carried by these patients.</p> <p>Methods</p> <p>We tested the mutations by site-directed mutagenesis. We also genotyped 8 exonic and intronic <it>ALPL </it>gene polymorphisms in the patients and in a control group in order to detect the possible existence of a recurrent intronic mild mutation.</p> <p>Results</p> <p>We found that most of the tested mutations exhibit a dominant negative effect that may account for the mild HPP phenotype, and that for at least some of the patients, a second mutation in linkage disequilibrium with a particular haplotype could not be ruled out.</p> <p>Conclusion</p> <p>Mild HPP results in part from compound heterozygosity for severe and moderate mutations, but also in a large part from heterozygous mutations with a dominant negative effect.</p

    Identification of hot-spot residues in protein-protein interactions by computational docking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex.</p> <p>Results</p> <p>We have applied here normalized interface propensity (<it>NIP</it>) values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value), and the advantage of not requiring any prior structural knowledge of the complex.</p> <p>Conclusion</p> <p>The <it>NIP </it>values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex.</p

    High-Affinity Inhibitors of Human NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase: Mechanisms of Inhibition and Structure-Activity Relationships

    Get PDF
    BACKGROUND: 15-Hydroxyprostaglandin dehydrogenase (15-PGDH, EC 1.1.1.141) is the key enzyme for the inactivation of prostaglandins, regulating processes such as inflammation or proliferation. The anabolic pathways of prostaglandins, especially with respect to regulation of the cyclooxygenase (COX) enzymes have been studied in detail; however, little is known about downstream events including functional interaction of prostaglandin-processing and -metabolizing enzymes. High-affinity probes for 15-PGDH will, therefore, represent important tools for further studies. PRINCIPAL FINDINGS: To identify novel high-affinity inhibitors of 15-PGDH we performed a quantitative high-throughput screen (qHTS) by testing &gt;160 thousand compounds in a concentration-response format and identified compounds that act as noncompetitive inhibitors as well as a competitive inhibitor, with nanomolar affinity. Both types of inhibitors caused strong thermal stabilization of the enzyme, with cofactor dependencies correlating with their mechanism of action. We solved the structure of human 15-PGDH and explored the binding modes of the inhibitors to the enzyme in silico. We found binding modes that are consistent with the observed mechanisms of action. CONCLUSIONS: Low cross-reactivity in screens of over 320 targets, including three other human dehydrogenases/reductases, suggest selectivity of the present inhibitors for 15-PGDH. The high potencies and different mechanisms of action of these chemotypes make them a useful set of complementary chemical probes for functional studies of prostaglandin-signaling pathways. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S2

    Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Get PDF
    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis

    Role of Dlg5/lp-dlg, a Membrane-Associated Guanylate Kinase Family Protein, in Epithelial-Mesenchymal Transition in LLc-PK1 Renal Epithelial Cells

    Get PDF
    Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase adaptor family of proteins, some of which are involved in the regulation of epithelial-to-mesenchymal transition (EMT). Dlg5 has been described as a susceptibility gene for Crohn's disease; however, the physiological function of Dlg5 is unknown. We show here that transforming growth factor-β (TGF-β)-induced EMT suppresses Dlg5 expression in LLc-PK1 cells. Depletion of Dlg5 expression by knockdown promoted the expression of the mesenchymal marker proteins, fibronectin and α-smooth muscle actin, and suppressed the expression of E-cadherin. In addition, activation of JNK and p38, which are stimulated by TGF-β, was enhanced by Dlg5 depletion. Furthermore, inhibition of the TGF-β receptor suppressed the effects of Dlg5 depletion. These observations suggest that Dlg5 is involved in the regulation of TGF-βreceptor-dependent signals and EMT

    A Novel Role for CD55 in Granulocyte Homeostasis and Anti-Bacterial Host Defense

    Get PDF
    Background: In addition to its complement-regulating activity, CD55 is a ligand of the adhesion class G protein-coupled receptor CD97; however, the relevance of this interaction has remained elusive. We previously showed that mice lacking a functional CD97 gene have increased numbers of granulocytes. Methodology/Results: Here,wedemonstratethatCD55-deficientmicedisplay a comparable phenotype with about two-fold more circulating granulocytes in the blood stream, the marginated pool, and the spleen. This granulocytosis was independent of increased complement activity. Augmented numbers of Gr-1-positive cells in cell cycle in the bone marrow indicated a higher granulopoietic activity in mice lacking either CD55 or CD97. Concomitant with the increase in blood granulocyte numbers, Cd55-/mice challenged with the respiratory pathogen Streptococcus pneumoniae developed less bacteremia and died later after infection. Conclusions: Collectively, these data suggest that complement-independent interaction of CD55 with CD97 is functionall

    Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomarkers that predict clinical response, tumor recurrence or patient survival are severely lacking for most cancers, particularly for oral and pharyngeal cancer. This study examines whether gene-promoter methylation of tumor DNA correlates with survival and recurrence rates in a population of patients with oral or pharyngeal cancer.</p> <p>Methods</p> <p>The promoter methylation status of the DNA repair gene <it>MGMT </it>and the tumor suppressor genes <it>CDKN2A and RASSF1 </it>were evaluated by methylation-specific PCR in 88 primary oral and pharyngeal tumors and correlated with survival and tumor recurrence. Quantitative <it>MGMT </it>methylation was also assessed.</p> <p>Results</p> <p>29.6% of the tumors presented with <it>MGMT </it>methylation, 11.5% with <it>CDKN2A </it>methylation and 12.1% with <it>RASSF1 </it>methylation. <it>MGMT </it>promoter methylation was significantly associated with poorer overall and disease-free survival. No differences in methylation status of <it>MGMT </it>and <it>RASSF1 </it>with HPV infection, smoking or drinking habits were observed. A significant inverse trend with the amount of <it>MGMT </it>methylation and overall and disease-free survival was observed (p<sub>trend </sub>= 0.002 and 0.001 respectively).</p> <p>Conclusion</p> <p>These results implicate <it>MGMT </it>promoter methylation as a possible biomarker for oral and pharyngeal cancer prognosis. The critical role of MGMT in DNA repair suggests that defective DNA repair may be correlative in the observed association between <it>MGMT </it>promoter methylation and tumor recurrence. Follow-up studies should include further quantitative MSP-PCR measurement, global methylation profiling and detailed analysis of downstream DNA repair genes regulated by promoter methylation.</p
    corecore