56 research outputs found

    Designing Public Transport To Foster Patronage And Social Inclusion

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne

    Vampires in the village Žrnovo on the island of Korčula: following an archival document from the 18th century

    Get PDF
    Središnja tema rada usmjerena je na raščlambu spisa pohranjenog u Državnom arhivu u Mlecima (fond: Capi del Consiglio de’ Dieci: Lettere di Rettori e di altre cariche) koji se odnosi na događaj iz 1748. godine u korčulanskom selu Žrnovo, kada su mještani – vjerujući da su se pojavili vampiri – oskvrnuli nekoliko mjesnih grobova. U radu se podrobno iznose osnovni podaci iz spisa te rečeni događaj analizira u širem društvenom kontekstu i prate se lokalna vjerovanja.The main interest of this essay is the analysis of the document from the State Archive in Venice (file: Capi del Consiglio de’ Dieci: Lettere di Rettori e di altre cariche) which is connected with the episode from 1748 when the inhabitants of the village Žrnove on the island of Korčula in Croatia opened tombs on the local cemetery in the fear of the vampires treating. This essay try to show some social circumstances connected with this event as well as a local vernacular tradition concerning superstitions

    Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules

    No full text
    Contains fulltext : 177168.pdf (publisher's version ) (Closed access)Multicompartment particles, which are particles composed of smaller building units, have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of several biomolecules in various applications. Supercritical carbon dioxide (CO2) processing is an industrial technology widely used for large-scale synthesis and processing of materials. However, the application of this technology for production of multicompartment particles from colloidal particles has not yet been explored. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO2 processing. We show that these RLG microparticles exhibit a high stability upon dispersion in aqueous media without requiring chemical cross-linking. We further demonstrate that these microparticles are cytocompatible and facilitate differential release of two different model compounds. The strategy presented here can be utilized as a cost-effective route for production of various types of multicompartment particles using colloidal particles with suitable interparticle interactions. STATEMENT OF SIGNIFICANCE: Multicompartment particles have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of multiple biomolecules in various biomedical applications. Nevertheless, common methods employed for the production of such particles are often complex and only offer small-scale production. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO2 processing. We show that these microparticles are cytocompatible and facilitate differential release of two model compounds with different molecular sizes, promising successful applications in various biomedical areas. Summarizing, this paper presents a novel strategy that can be utilized as a cost-effective route for production of various types of multicompartment particles using a wide range of colloidal building blocks

    Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation.

    No full text
    Item does not contain fulltextThe aim of current study was to evaluate the effect of nano-apatitic particles (nAp) incorporation on the degradation characteristics and biocompatibility of poly(lactide-co-glycolide) (PLGA)-based nanofibrous scaffolds. Composite PLGA/poly(varepsilon-caprolactone) (PCL) blended (w/w = 3/1) polymeric electrospun scaffolds with 0-30 wt% of nAp incorporation (n0-n30) were prepared. The obtained scaffolds were firstly evaluated by morphological, physical and chemical characterization, followed by an in vitro degradation study. Further, n0 and n30 in both virgin and 3-week pre-degraded status were subcutaneously implanted in rats, either directly or in stainless steel mesh cages, to evaluate in vivo tissue response. The results showed that the incorporation of nAp yields an nAp amount-dependent buffering effect on pH-levels during degradation and delayed polymer degradation based on molecular weight analysis. Regarding biocompatibility, nAp incorporation significantly improved the tissue response during a 4-week subcutaneous implantation, showing less infiltration of inflammatory cells (monocyte/macrophages) as well as less foreign body giant cells (FBGCs) formation surrounding the scaffolds. Similar cytokine expression (gene and protein level) was observed for all groups of implanted scaffolds, although marginal differences were found for TNF-alpha and TGF-beta at gene level as well as GRO-KC at protein level after 1 week of implantation. The results of the current study indicate that hybridization of the weak alkaline salt nAp is effective to control the in vivo adverse tissue reaction of PLGA materials, which is beneficial for optimizing final clinical application of different PLGA-based biomedical devices.1 oktober 201

    Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(epsilon-caprolactone) and Loaded with VEGF for Tissue Engineering Applications

    No full text
    Item does not contain fulltextThe aim of this study was to fabricate nanofibrous scaffolds based on blends of a hydroxyl functionalized polyester (poly(hydroxymethylglycolide-co-epsilon-caprolactone), pHMGCL) and poly(epsilon-caprolactone) (PCL), loaded with bovine serum albumin (BSA) as a protein stabilizer and vascular endothelial growth factor (VEGF) as a potent angiogenic factor by means of a coaxial electrospinning technique. The scaffolds were characterized by scanning electron microscopy (SEM), fluorescence microscopy (FM), and differential scanning calorimetry (DSC). The scaffolds displayed a uniform fibrous structure with a fiber diameter around 700 nm. The release of BSA from the core of the fibers was studied by high performance liquid chromatography (HPLC), and it was shown that the coaxial scaffolds composed of blends of pHMGCL and PCL exhibited faster release than the comparative PCL scaffolds. VEGF was also incorporated in the core of the scaffolds, and the effect of the released protein on the attachment and proliferation of endothelial cells was investigated. It was shown that the incorporated protein preserved its biological activity and resulted in initial higher numbers of adhered cells. Thus, these bioactive scaffolds based on blends of pHMGCL/PCL loaded with VEGF can be considered as a promising candidate for tissue engineering applications

    Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites

    No full text
    Contains fulltext : 152781.pdf (publisher's version ) (Closed access)The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies
    • …
    corecore