164 research outputs found

    Divergent roles of Smad3 and PI3-kinase in murine adriamycin nephropathy indicate distinct mechanisms of proteinuria and fibrogenesis

    Get PDF
    Multiple transforming growth factor (TGF)-β-induced fibrogenic signals have been described in vitro. To evaluate mechanisms in vivo, we used an adriamycin nephropathy model in 129x1/Svj mice that display massive proteinuria by day 5 to7 and pathological findings similar to human focal segmental glomerulosclerosis by day 14. TGF-β mRNA expression increased after day 7 along with nuclear translocation of the TGF-β receptor-specific transcription factor Smad3. Inhibiting TGF-β prevented both pathological changes and type-I collagen and fibronectin mRNA expression, but proteinuria persisted. Renal Akt was phosphorylated in adriamycin-treated mice, suggesting PI3-kinase activation. Expression of mRNA for the p110γ isozyme of PI3-kinase was specifically increased and p110γ colocalized with nephrin by immunohistochemistry early in disease. Nephrin levels subsequently decreased. Inhibition of p110γ by AS605240 preserved nephrin expression and prevented proteinuria. In cultured podocytes, adriamycin stimulated p110γ expression. AS605240, but not a TGF-β receptor kinase inhibitor, prevented adriamycin-induced cytoskeletal disorganization and apoptosis, supporting a role for p110γ in podocyte injury. AS605240, at a dose that decreased proteinuria, prevented renal collagen mRNA expression in vivo but did not affect TGF-β-stimulated collagen induction in vitro. Thus, PI3-kinase p110γ mediates initial podocyte injury and proteinuria, both of which precede TGF-β-mediated glomerular scarring

    Tubulointerstitial injury and the progression of chronic kidney disease

    Get PDF
    In chronic kidney disease (CKD), once injury from any number of disease processes reaches a threshold, there follows an apparently irreversible course toward decline in kidney function. The tubulointerstitium may play a key role in this common progression pathway. Direct injury, high metabolic demands, or stimuli from various other forms of renal dysfunction activate tubular cells. These, in turn, interact with interstitial tissue elements and inflammatory cells, causing further pathologic changes in the renal parenchyma. The tissue response to these changes thus generates a feed-forward loop of kidney injury and progressive loss of function. This article reviews the mechanisms of this negative cycle mediating CKD

    Pathophysiology of focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a major cause of idiopathic steroid-resistant nephrotic syndrome (SRNS) and end-stage kidney disease (ESKD). In recent years, animal models and studies of familial forms of nephrotic syndrome helped elucidate some mechanisms of podocyte injury and disease progression in FSGS. This article reviews some of the experimental and clinical data on the pathophysiology of FSGS

    Production and degradation of extracellular matrix in reversible glomerular lesions in rat model of habu snake venom-induced glomerulonephritis

    Get PDF
    We investigated the mechanism of development and repair process of glomerular injury in a rat model of habu snake (Trimeresurus flavoviridis) venom (HSV)-induced glomerulonephritis. Glomerulonephritis was induced in rats by intravenously injecting HSV at 3 mg/kg. Renal tissue was isolated and subjected to immunohistochemical analysis for expression levels of type IV collagen, heat shock protein 47 (HSP47), transforming growth factor-β (TGF-β), and matrix metalloproteinase-3 (MMP-3), as well as its transcription factor Ets-1. Expression levels of HSP47, TGF-β, and type IV collagen began to increase in the mesangial area starting from day 14 and peaked on day 21, followed by a gradual decrease. Expression levels of MMP-3 and Ets-1 started to increase coinciding with peak production of mesangial matrix on day 21, peaking on day 35, followed by gradual decrease. Expression of MMP-3 and Ets-1 persisted until day 63, whereas that of HSP47 and type IV collagen returned to baseline level at this time point. Time-course changes of extracellular matrix (ECM) accumulation in glomeruli in the HSV-induced glomerulonephritis model were correlated with those of factors involved in both ECM production and degradation systems. Continued expression of factors in the degradation system seems particularly important for the repair process. These findings might lead to new therapies that prevent and repair glomerular injury

    Absence of Host Plasminogen Activator Inhibitor 1 Prevents Cancer Invasion and Vascularization

    Full text link
    Acquisition of invasive/metastatic potential through protease expression is an essential event in tumor progression. High levels of components of the plasminogen activation system, including urokinase, but paradoxically also its inhibitor, plasminogen activator inhibitor 1 (PAI1), have been correlated with a poor prognosis for some cancers. We report here that deficient PAI1 expression in host mice prevented local invasion and tumor vascularization of transplanted malignant keratinocytes. When this PAI1 deficiency was circumvented by intravenous injection of a replication-defective adenoviral vector expressing human PAI1, invasion and associated angiogenesis were restored. This experimental evidence demonstrates that host-produced PAI is essential for cancer cell invasion and angiogenesis

    Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease

    Get PDF
    Background: Tubulointerstitial fibrosis represents the key underlying pathology of Chronic Kidney Disease (CKD), yet treatment options remain limited. In this study, we investigated the role of connexin43 (Cx43) hemichannel-mediated adenosine triphosphate (ATP) release in purinergic-mediated disassembly of adherens and tight junction complexes in early tubular injury. Methods: Human primary proximal tubule epithelial cells (hPTECs) and clonal tubular epithelial cells (HK2) were treated with Transforming Growth Factor Beta1 (TGFβ1) ± apyrase, or ATPγS for 48h. For inhibitor studies, cells were co-incubated with Cx43 mimetic Peptide 5, or purinergic receptor antagonists Suramin, A438079 or A804598. Immunoblotting, single-cell force spectroscopy and trans-epithelial electrical resistance assessed protein expression, cell-cell adhesion and paracellular permeability. Carboxyfluorescein uptake and biosensing measured hemichannel activity and real-time ATP release, whilst a heterozygous Cx43+/- mouse model with unilateral ureteral obstruction (UUO) assessed the role of Cx43 in vivo. Results: Immunohistochemistry of biopsy material from patients with diabetic nephropathy confirmed increased expression of purinergic receptor P2X7. TGFβ1 increased Cx43 mediated hemichannel activity and ATP release in hPTECs and HK2 cells. The cytokine reduced maximum unbinding forces and reduced cell-cell adhesion, which translated to increased paracellular permeability. Changes were reversed when cells were co-incubated with either Peptide 5 or P2-purinoceptor inhibitors. Cx43+/- mice did not exhibit protein changes associated with early tubular injury in a UUO model of fibrosis. Conclusion: Data suggest that Cx43 mediated ATP release represents an initial trigger in early tubular injury via its actions on the adherens and tight junction complex. Since Cx43 is highly expressed in nephropathy, it represents a novel target for intervention of tubulointerstitial fibrosis in CKD

    Estrogen: It's not just for reproduction any more

    Full text link
    corecore