21,679 research outputs found
Parametric study of thermal storage containing rocks or fluid filled cans for solar heating and cooling, phase 2
The test data and an analysis of the heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans and standard bricks as energy storage medium are presented. This experimental investigation was initiated to find a usable heat intensive solar thermal storage device other than rock storage and water tank. Four different sizes of soup cans were stacked in a chamber in three different arrangements-vertical, horizontal, and random. Air is used as transfer medium for charging and discharge modes at three different mass flow rates and inlet air temperature respectively. These results are analyzed and compared, which show that a vertical stacking and medium size cans with Length/Diameter (L/D) ratio close to one have better average characteristics of heat transfer and pressure drop
Parametric study of rock pile thermal storage for solar heating and cooling phase 1
The test data and an analysis were presented, of heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans as the energy storage medium. An attempt was made to optimize can size, can arrangement, and bed flow rates by experimental and analytical means. Liquid filled cans, as storage media, utilize benefits of both solids like rocks, and liquids like water. It was found that this combination of solid and liquid media shows unique heat transfer and heat content characteristics and is well suited for use with solar air systems for space and hot water heating. An extensive parametric study was made of heat transfer characteristics of rocks, of other solids, and of solid containers filled with liquids
Non-parametric Reconstruction of Cluster Mass Distribution from Strong Lensing: Modelling Abell 370
We describe a new non-parametric technique for reconstructing the mass
distribution in galaxy clusters with strong lensing, i.e., from multiple images
of background galaxies. The observed positions and redshifts of the images are
considered as rigid constraints and through the lens (ray-trace) equation they
provide us with linear constraint equations. These constraints confine the mass
distribution to some allowed region, which is then found by linear programming.
Within this allowed region we study in detail the mass distribution with
minimum mass-to-light variation; also some others, such as the smoothest mass
distribution. The method is applied to the extensively studied cluster Abell
370, which hosts a giant luminous arc and several other multiply imaged
background galaxies. Our mass maps are constrained by the observed positions
and redshifts (spectroscopic or model-inferred by previous authors) of the
giant arc and multiple image systems. The reconstructed maps obtained for \a370
reveal a detailed mass distribution, with substructure quite different from the
light distribution. The method predicts the bimodal nature of the cluster and
that the projected mass distribution is indeed elongated along the axis defined
by the two dominant cD galaxies. But the peaks in the mass distribution appear
to be offset from the centres of the cDs. We also present an estimate for the
total mass of the central region of the cluster. This is in good agreement with
previous mass determinations. The total mass of the central region is
M=(2.0-2.7) 10^14 Msun/h50, depending on the solution chosen.Comment: 14 pages(19 postscript figures), minor corrections, MNRAS in pres
Optimization of an Electromagnetic Energy Harvesting Device
This paper presents the modeling and optimization of an electromagnetic-based generator for generating power from ambient vibrations. Basic equations describing such generators are presented and the conditions for maximum power generation are described. Two-centimeter scale prototype generators, which consist of magnets suspended on a beam vibrating relative to a coil, have been built and tested. The measured power and modeled results are compared. It is shown that the experimental results confirm the optimization theory
Recommended from our members
Suspension Design, Modeling, and Testing of a Thermo-Acoustic-Driven Linear Alternator
The Score-Stove™ generates electricity from a wood-burning cooking stove using a thermo-acoustic engine (TAE) that converts heat to sound through a linear alternator (LA). This paper introduces a prototype hemitoroidal suspension that was refined into a segmented trapezoidal shape that gave a higher cyclic life for the LA and includes a critical evaluation that compares a theoretical analysis with experimental results. The results show an improvement from the 40% efficiency of a standard loudspeaker used in reverse as an LA to 70–80% efficiency with the new suspension and a double Halbach array magnetic topology
Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12
Electronic state evolution in the metal-non-metal transition of PrRu4P12 has
been studied by X-ray and polarized neutron diffraction experiments. It has
been revealed that, in the low-temperature non-metallic phase, two inequivalent
crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2)
ground states are located at Pr1 and Pr2 sites forming the bcc unit cell
surrounded by the smaller and larger cubic Ru-ion sublattices, respectively.
This modulated electronic state can be explained by the p-f hybridization
mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f
hybridization effect plays an important role for the electronic energy gain in
the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp
- …