44 research outputs found

    Repairing Gamut Problems in CIECAM02: A Progress Report

    Get PDF
    The color-appearance model CIECAM02 has several problems, which can result in mathematical instabilities, due to the relation of the chromatic-adaptation primaries to the spectrum locus and to the presumed physiological cone primaries. To keep a corresponding color within the positive gamut given by the chromatic adaptation primaries, that gamut must lie within the cone primary octant. To contain a color that is already outside the gamut, it suffices to algebraically prevent adaptation from moving a test color outside the positive octant of the physiological cone space. Such modifications may be needed to avoid the mathematical problems in CIECAM02

    Full counting statistics of information content

    Full text link
    We review connections between the cumulant generating function of full counting statistics of particle number and the R\'enyi entanglement entropy. We calculate these quantities based on the fermionic and bosonic path-integral defined on multiple Keldysh contours. We relate the R\'enyi entropy with the information generating function, from which the probability distribution function of self-information is obtained in the nonequilibrium steady state. By exploiting the distribution, we analyze the information content carried by a single bosonic particle through a narrow-band quantum communication channel. The ratio of the self-information content to the number of bosons fluctuates. For a small boson occupation number, the average and the fluctuation of the ratio are enhanced.Comment: 16 pages, 5 figure

    Experimental realization of on-chip topological nanoelectromechanical metamaterials

    Get PDF
    Topological mechanical metamaterials translate condensed matter phenomena, like non-reciprocity and robustness to defects, into classical platforms. At small scales, topological nanoelectromechanical metamaterials (NEMM) can enable the realization of on-chip acoustic components, like unidirectional waveguides and compact delay-lines for mobile devices. Here, we report the experimental realization of NEMM phononic topological insulators, consisting of two-dimensional arrays of free-standing silicon nitride (SiN) nanomembranes that operate at high frequencies (10-20 MHz). We experimentally demonstrate the presence of edge states, by characterizing their localization and Dirac cone-like frequency dispersion. Our topological waveguides also exhibit robustness to waveguide distortions and pseudospin-dependent transport. The suggested devices open wide opportunities to develop functional acoustic systems for high-frequency signal processing applications

    Designing perturbative metamaterials from discrete models

    Get PDF
    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce ‘perturbative metamaterials’, a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells

    From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics

    Get PDF
    We derive exact formulas for the expectation value of local observables in a one-dimensional gas of bosons with point-wise repulsive interactions (Lieb-Liniger model). Starting from a recently conjectured expression for the expectation value of vertex operators in the sinh-Gordon field theory, we derive explicit analytic expressions for the one-point K-body correlation functions \u27e8(\u3a8\u2020)K(\u3a8)K\u27e9 in the Lieb-Liniger gas, for arbitrary integer K. These are valid for all excited states in the thermodynamic limit, including thermal states, generalized Gibbs ensembles and non-equilibrium steady states arising in transport settings. Our formulas display several physically interesting applications: most prominently, they allow us to compute the full counting statistics for the particle-number fluctuations in a short interval. Furthermore, combining our findings with the recently introduced generalized hydrodynamics, we are able to study multi-point correlation functions at the Eulerian scale in non-homogeneous settings. Our results complement previous studies in the literature and provide a full solution to the problem of computing one-point functions in the Lieb Liniger model

    Nonlinearity and Topology

    Full text link
    The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated

    Exciton-polariton topological insulator

    Get PDF
    The authors thank R. Thomale for fruitful discussions. S.K. acknowledges the European Commission for the H2020 Marie SkƂodowska-Curie Actions (MSCA) fellowship (Topopolis). S.K., S.H. and M.S. are grateful for financial support by the JMU-Technion seed money program. S.H. also acknowledges support by the EPSRC ”Hybrid Polaritonics” Grant (EP/M025330/1). The WĂŒrzburg group acknowledges support by the ImPACT Program, Japan Science and Technology Agency and the State of Bavaria. T.C.H.L. and R. G. were supported by the Ministry of Education (Singapore) Grant No. 2017-T2-1-001Topological insulators—materials that are insulating in the bulk but allow electrons to flow on their surface—are striking examples of materials in which topological invariants are manifested in robustness against perturbations such as defects and disorder1. Their most prominent feature is the emergence of edge states at the boundary between areas with different topological properties. The observable physical effect is unidirectional robust transport of these edge states. Topological insulators were originally observed in the integer quantum Hall effect2 (in which conductance is quantized in a strong magnetic field) and subsequently suggested3,4,5 and observed6 to exist without a magnetic field, by virtue of other effects such as strong spin–orbit interaction. These were systems of correlated electrons. During the past decade, the concepts of topological physics have been introduced into other fields, including microwaves7,8, photonic systems9,10, cold atoms11,12, acoustics13,14 and even mechanics15. Recently, topological insulators were suggested to be possible in exciton-polariton systems16,17,18 organized as honeycomb (graphene-like) lattices, under the influence of a magnetic field. Exciton-polaritons are part-light, part-matter quasiparticles that emerge from strong coupling of quantum-well excitons and cavity photons19. Accordingly, the predicted topological effects differ from all those demonstrated thus far. Here we demonstrate experimentally an exciton-polariton topological insulator. Our lattice of coupled semiconductor microcavities is excited non-resonantly by a laser, and an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array. This chiral edge mode is populated by a polariton condensation mechanism. We use scanning imaging techniques in real space and Fourier space to measure photoluminescence and thus visualize the mode as it propagates. We demonstrate that the topological edge mode goes around defects, and that its propagation direction can be reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator paves the way for topological phenomena that involve light–matter interaction, amplification and the interaction of exciton-polaritons as a nonlinear many-body system.PostprintPeer reviewe

    Pucallpa : Portrait einer Pionierstadt in der peruanischen Selva (Ostperu)

    No full text
    No abstract available
    corecore