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Topological insulators are a striking example of materials in which topological invariants 

are manifested in robustness against perturbations [1]. Their most prominent feature is the 

emergence of topological edge states with reduced dimension at the boundary between areas 

with distinct topological invariants. The observable physical effect is unidirectional robust 

transport, unaffected by defects or disorder. Topological insulators were originally observed 

in the integer quantum Hall effect [2], and subsequently suggested [3-5] and observed [6] 

even in the absence of magnetic field. These were fermionic systems of correlated electrons. 

However, during the past decade the concepts of topological physics have been introduced 

into numerous fields beyond condensed matter, ranging from microwaves [7,8] and photonic 

systems [9,10] to cold atoms [11], acoustics [12,13] and even mechanics [14]. Recently, 

topological insulators were proposed in exciton-polariton systems [15-17] organized as 

honeycomb (graphene-like) lattices, under the influence of a magnetic field.  Topological 

phenomena in exciton-polaritons are fundamentally different from all topological effects 

demonstrated experimentally thus far: exciton-polaritons are part-light part-matter 
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quasiparticles emerging from the strong coupling of quantum well excitons and cavity 

photons [18]. Here, we demonstrate experimentally the first exciton-polariton topological 

insulator. This constitutes the first symbiotic light-matter topological insulators. Our 

polariton lattice is excited non-resonantly, and the chiral topological polariton edge mode is 

populated by a polariton condensation mechanism. We use scanning imaging techniques in 

real-space and in Fourier-space to measure photoluminescence, and demonstrate that the 

topological edge mode avoids defects, and that the propagation direction of the mode can be 

reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator 

paves the way for a variety of new topological phenomena, as they involve light-matter 

interaction, gain, and perhaps most importantly – exciton-polaritons interact with one 

another as a nonlinear many-body system. 

Microcavity exciton-polaritons (polaritons) are composite bosons originating from the strong 

coupling of quantum well excitons to microcavity photons. While the excitonic fraction provides 

a strong non-linearity, the photonic part results in a low effective mass, allowing the formation of 

a driven-dissipative Bose-Einstein condensate [19], making polaritons being referred to as 

„quantum fluids of light“ [20]. For the epitaxially well-controlled III-V semiconductor material 

system, a variety of techniques are available to micropattern such cavities in order to precisely 

engineer the potential landscapes of polaritons [21]. With the recent advances of bringing 

topological effects to the realms of photonics and polaritonics [7-10,22], several avenues to realize 

topological edge propagation with polaritons have been suggested [15-17], with honeycomb 

geometries (“artificial graphene” [23]) being of particular interest to realize a C = 2 Chern band 

insulator [17]. Indeed, polariton honeycomb lattices have been found to support Dirac-cone 

dispersions [24] as well as edge modes [25] inherited from their graphene origin [26,27]. Here, we 



take the next step and realize a topological Chern insulator in the first symbiotic part-light part 

matter system: the system of exciton-polaritons. Our experiments are based on the proposals [15-

17] of a honeycomb potential landscape for exciton-polaritons with its time-reversal symmetry 

broken by an applied magnetic field. 

    Let us first introduce the underlying physics and show its features in numerical simulations with 

a realistic set of sample parameters. The experiments display reliable condensation of polaritons 

at the vicinity of the Dirac cones and the creation of topological edge modes enabled by applying 

a magnetic field. Hence, we consider the injection of polaritons into the topological gap and focus 

on the inherent properties of the chiral edge modes.  

   A general schematic of the experiment is presented in Fig. 1a, while Figs. 1b and 1c depict the 

calculated dispersion relation of the honeycomb structure in the direction Γ→K, connecting two 

Dirac cones (K and Kʹ), without and with applied magnetic field, respectively. The effective spin-

orbit coupling of polaritons, induced by TE-TM mode splitting, breaks the polarization-related 

symmetry and thus each Dirac point transforms into four inverted parabolas [17]. While the spin-

orbit interaction is extremely small in real graphene [28], “polariton graphene” offers the 

possibility to make the effective spit-orbit coupling sufficiently large to open a sizeable gap in a 

magnetic field. Without a magnetic field, the two central parabolas touch each other at the Dirac 

cones of the underlying honeycomb lattice (Fig. 1b). The degeneracy between the states in the 

crossing points can be lifted in the presence of a magnetic field and a finite Zeeman splitting. As 

a consequence, an energy gap forms in the vicinity of the Dirac cones (Fig. 1c). It is worth 

mentioning that the Dirac cones K and Kʹ are not equivalent. At the K (Kʹ) point, the "valence" 

band is formed from the B (A) pillars and the "conduction" band is formed from the A (B) pillars 



[17]. The reversed order of the bands in the basis of the sublattices signifies that the gap is 

topologically non-trivial [1]. 

   The interplay of an external magnetic field and the effective spin-orbit coupling (TE-TM mode 

splitting) results in non-zero Berry connections around the K and Kʹ points, contributing to the total 

band Chern number C=±2 [16,17]. As a consequence, the honeycomb structure supports one-way 

propagating edge states for the energies within the topological gap. Fig. 1c demonstrates the results 

of a band structure calculation combined with the dispersion of the edge states localized at the 

zigzag edge of the honeycomb structure. The propagation direction of these edge states is related 

to the direction of the external magnetic field: the polariton edge current is either left moving (L, 

yellow) or right moving (R, red), depicted in Fig. 1a, depending on the sign of the magnetic field. 

Fig. 1e depicts the corresponding calculated edge mode.  

   To illustrate the existence and robustness of the topologically-protected one-way edge states, we 

simulate the evolution of a wavepacket excited locally (Figs. 1f, g (red circle)) at the zigzag edge 

of the honeycomb structure. Figs. 1f and 1g show that the launched wave packet starts to propagate 

left or right along the edge, depending on the polarity of the magnetic field, whereas in the absence 

of magnetic field, the launched wave packet remains at the excitation point. Note that the overall 

intensity decreases with propagation, since the model takes into account a realistic polariton 

lifetime of ~35 ps (see Methods for details). Furthermore, the chiral edge mode is topologically 

protected since it propagates along a 90° corner and is able to bypass a point-like defect (see 

Methods). 

    Having established the features we expect to observe in an exciton-polariton topological 

insulator, we describe the experimental platform. To realize a polariton honeycomb potential 

lattice, we fabricate a planar microcavity containing three In0.04Ga0.96As quantum wells (QWs) in 



a λ-cavity, sandwiched between two GaAs/AlGaAs distributed Bragg reflectors (DBRs) with 30 

(35.5) top (bottom) mirror pairs (Fig. 2a). Subsequently, we use electron beam lithography to 

define the honeycomb lattice, employing micropillars with a diameter of d=2.0 µm and a pillar-to-

pillar overlap of v=a/d=0.85, where a denotes the center-to-center distance between neighboring 

pillars. Finally, the upper DBR is etched in such a way that only two DBR pairs of the top DBR 

remain, so as not to damage the active QW region (Figs. 2b, c) (see Methods). When these sites 

are arranged in a two-dimensional lattice, the discrete pillar modes hybridize due to their proximity 

to one another and form a polaritonic band structure. The honeycomb lattice is characterized by a 

two-element base in real-space (Fig. 2d) and six degenerate K- and Kʹ-points supporting Dirac 

cones in the first Brillouin zone (Fig. 2e), as well known from graphene. Fig. 2f depicts 

characterization of the polariton honeycomb lattice in the linear regime using non-resonant laser 

excitation. The Fourier-space energy-resolved photoluminescence (PL) of the investigated lattice 

is imaged in ky-direction, and scanned in kx-direction. The blue data points are fitted to the 

measured dispersions, accurately revealing the six Dirac cones at the K- and Kʹ-points. The results 

of the corresponding tight-binding model (see Methods for details) are plotted in red and yellow, 

agreeing very well with the experimental data.  

    Next, we describe the experiments, conducted on the honeycomb exciton-polariton lattice under 

an external magnetic field, aiming to find topologically non-trivial edge states. To be able to 

observe a band gap that opens at the Dirac points, the Zeeman-splitting as well as the TE-TM 

splitting at the Dirac points, need to be sufficiently large compared to the PL linewidth. This 

implies that the polaritons need to have a sufficient excitonic part. Therefore, we select a lattice at 

a moderate negative detuning of δ=−11.5 meV as summarized in the Methods Section.  



     In order to assess the size of the bandgap, we apply polarization resolved spectroscopy, making 

use of a λ/4 polarization series at an external magnetic field of B=0 T and 5 T. At an external 

magnetic field of B=+5 T, the Hopfield coefficients at the Dirac points return a photonic fraction 

of |C|2=0.96 and an excitonic fraction of |X|2=0.04. Furthermore, the TE-TM splitting at the 

wavevector of the Dirac point (i.e. |kD|≈0.77 π/a) can be estimated to be 400 µeV for the photons, 

resulting in an effective TE-TM splitting for the exciton-polarions ≃384 µeV (βeff≃263 µeVµm2). 

The Zeeman-splitting of the excitonic mode is determined to be ~540 µeV, leading to Δeff≃22 µeV 

at the Dirac point (see Methods). As the TE-TM-splitting is considerably larger than the Zeeman-

splitting in the lattice studied here, the experimentally determined band gap that opens due to the 

magnetic field is of Δg=(108±32) µeV with Δeff<Δg<βeff, which, as we show later on, is reasonable 

for observing the topological features of our lattice and compares well with a gap size of about 

100 µeV found for realistic system parameters in [16]. After having established that a band gap 

opens at the Dirac points under the influence of an external magnetic field, we employ non-

resonant excitation, under conditions allowing for polariton condensation into a chiral edge state 

within this band gap. Scans of the PL signal in real space as well as Fourier space are performed 

on the polariton lattice at external magnetic fields of B=−5 T, 0 T and +5 T. The sample is excited 

on the zigzag-edge by a pulsed and chopped large laser beam with a diameter of 40 µm at 792 nm 

wavelength, tuned to the first stopband minimum (see Fig. 1a). In Fig. 3a the linear polariton 

dispersion in Kʹ→Γ→K direction at B=0 T and (b) at B=+5 T is displayed. The Dirac-cone 

dispersion is clearly visible (P~0.1 mW). At a threshold power of Pthr=1.8 mW, we observe a 

nonlinear increase of the output power as well as a sudden decrease in linewidth (see Methods for 

details), establishing that a polariton condensate has formed at the K,Kʹ-points at around 

ky≈±0.77 π/a, as displayed in Fig. 3c. We now perform mode tomography, scanning the real space 



(x,y) landscape and measuring the energy EPL. Fig. 3d shows the spectrum of a line perpendicular 

to the zigzag edge, taken at the position indicated by the solid white line in Fig. 3g. The dashed 

white line depicts the edge of the sample. Remarkably, besides a S-band condensate throughout 

the excited structure at ES=1.4674 eV, we observe an edge mode: a region of high intensity residing 

only at the outermost row of lattice sites spatially and spectrally at an energy of 1.4678 eV (white 

ellipse) – the expected topological band gap.  

    Fig. 3e shows the intensity pattern integrated over the energetic range of the trivial S-band mode 

centered at 1.4674 eV. Clearly, the condensate is relatively homogeneous over a large fraction of 

the lattice. The white overlaid lattice geometry and the microscopy image insets illustrate the 

position of the edge of the sample. Now, by changing the energy of the mode tomography to an 

energy Eedge=1.4678 eV, within the topological gap (under a magnetic field of +5 T), the existence 

of edge states becomes unequivocal (at x≈8 µm in Fig. 3g). The PL at this energy originates 

predominantly from the outermost row of lattice sites with almost no emission detected from the 

bulk of the lattice. The mode is in excellent agreement with the Bloch mode calculations in Figs. 

1e, f, g. In addition, the theoretical description within a Ginzburg-Landau-based model confirms 

that indeed polariton condensation into the edge mode occurs (see Methods for details). We now 

move on to study the robustness of the topological edge state. We do that by installing an artificial 

defect into the lattice at y=15 μm (see white circle in Figs. 3e-g). The defect is formed by leaving 

one of the sites on the zigzag edge of the honeycomb lattice unoccupied (see Methods). Normally, 

such a strong defect would cause scattering into the bulk, but here (see Figs. 3f, g) such scattering 

is suppressed indicating that the transport of the topological edge state is immune to such defects. 

In addition, we perform a mode tomography using non-resonant excitation with a large spot at the 

corner position of the sample. When plotting the energy of the topological edge mode 



Eedge=1.4678 eV in Fig. 3f, one clearly observes that the mode extends around the corner from the 

zigzag into the armchair configuration, without any sign of backscattering or bulk scattering. The 

measurements at B=−5 T show very similar behavior, but the transport is in the opposite direction. 

Remarkably, when the magnetic field is absent (B=0 T), the edge mode vanishes completely (see 

Methods for details). The observation of the edge mode around the corner and especially its 

existence at the armchair edge, where topologically-trivial honeycomb lattices do not have edge 

modes [9,26], prove  unequivocally that the edge mode we observe is indeed topological and is 

endowed with topological protection. 

    To get further insight into the nature of these edge states, we analyze hyperspectral images 

((kx,ky) vs. EPL) to identify the dominant propagation direction, with and without magnetic field. 

The results are displayed in Fig. 4. While in real-space the modes can be clearly separated in 

energy, the integration over Fourier-space results in the topological edge mode and the trivial bulk 

modes to overlay on top of one another. Figs. 4a, b depict the integrated intensities of the full S-

band condensate (1.467−1.468 eV) including the energies associated with the edge state, for 

experiments at B=+5 T and −5 T, respectively. To analyze the directionality of polariton transport, 

the maximum peak intensities at the two maxima at kx≈0 and ky≈±0.77 π/a are extracted, by 

identifying the central pixel of the peak and averaging the intensity of a region of 3×3 pixels 

centered around this position. The vertical axis of Fig. 4c shows the ratio of the luminescence 

travelling in one direction (+ky) to the opposite direction (−ky). Deviation of this quantity from 

unity is an essential characteristic of a chiral state and an opposite deviation should appear for 

opposite applied magnetic field. The corresponding intensity ratios are plotted in blue and show a 

clear directionality when an external magnetic field is applied. The transport changes its 

predominant direction along the edge when the direction of the magnetic field is inverted. This 



observation supports the interpretation of the edge-states being a result of a topologically non-

trivial band gap, with the edge mode contributing to the chirality along the edge. Reversing the 

magnetic field reverses the slope of the dispersion curve of the topological edge mode, which is 

physically manifested in reversing the group velocity. On the other hand, we find no systematic 

directionality for the peaks at kx≈−0.77 π/a in Figs. 4a, b, which implies that these arise solely from 

the bulk condensate. 

   The experimental results depicted in Figs. 3 and 4 prove, unequivocally, the observation of an 

exciton-polariton topological Chern insulator. The application of a magnetic field on the 

honeycomb lattice opens up a topological bandgap with topological edge states supporting 

unidirectional transport whose propagation direction is determined by the field polarity. The lack 

of scattering from an artificial defect manifests the robustness of the topological edge mode. 

Furthermore, the observation of the edge mode extending around the corner and at the armchair 

termination without bulk scattering is a distinct feature of the topological edge mode. Our results 

lead the way to efficient light trapping and topologically protected propagation of coherent 

exciton-polariton condensates in a well-developed semiconductor platform, where also electrical 

driving can be envisaged [29]. We now aim at further exploring the topological lasing aspect of 

these experiments, by comparing topological edge mode lasing to lasing from a trivial edge mode 

in e.g. a Semenoff insulator. Such experiments would also link our exciton-polariton platform to 

the recently observed topological insulator laser [30,31]. Due to the interacting nature of 

polaritons, the in-depth study of collective bosonic effects in topological insulators can be 

envisaged. For example, the large nonlinearity displayed by this exciton-polariton topological 

system can support the observation of solitons, which were proposed [32,33] but have thus far 

never been observed in any system. Altogether, this work paves the way towards new topological 



polaritonic devices with unique properties and functionalities involving nonlinearity, gain, 

interactions and coherence.  
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Figure 1 | Experimental scheme and theoretically calculated Bloch mode and dynamics  calculations 
of topological polariton edge modes. (a) Schematic of the non-resonant laser excitation of left moving 
(yellow) and right moving (red) chiral topological polariton edge modes. (b, c) Trivial and topological band 
structures of the polariton honeycomb lattice for zero Zeeman splitting (b) and with Zeeman splitting 
Δeff=0.2 meV, induced by the external magnetic field (c). One-way topological edge modes are presented 
by red and blue lines within the topological gap. (d) Schematic and (e) calculated intensity profiles of the 
edge modes. (f, g) Calculated propagation dynamics of edge modes injected coherently (red circle) into the 
topological gap. (f)  Left moving time-sequence (yellow) for negative Zeeman splitting ΔB=‒0.8 meV and 
(g) right moving propagation (red) for positive Zeeman splitting ΔB=+0.8 meV. 

 

 

Figure 2 | Lattice device layout and geometry. (a-c) Scanning electron microscope images of the 
processed polariton honeycomb lattice. (a) Cleaved cross section of the microcavity prior to processing. (b) 
Tilted view of the half-etched honeycomb lattice for pillars with a diameter of d=2.0 μm and an overlap 
v=a/d=0.85. (c) Cleaved cross-section after etching, showing that only the top DBR has been etched. (d) 
Real-space honeycomb unit cell with two-element basis. (e) First Brillouin zone of the honeycomb lattice, 
featuring the six K- and K’-points. (f) Measured Fourier-space energy-resolved photoluminescence of the 
investigated lattice. The blue data points are fitted to the measured dispersions, agreeing well with a tight-
binding model (red/yellow), accurately revealing the six Dirac cones at the K- and K’-points. 

 

Figure 3 | Photoluminescence measurements of a polariton condensate in a topological edge mode. 
(a) Polariton dispersion along Kʹ→Γ→K direction at B=0 T compared with the calculated Bloch mode 
model (black dots). (b) Equivalent dispersions at B=+5 T, below and (c) above the threshold Pthr=1.8 mW, 
where condensation into the K,Kʹ-points of the S-band is observed. Bloch mode calculations (red dots) show 
a distinct gap. (d) Real-space spectrum in x-direction along the straight white line in (g). The x-axis in Fig. 
3d, e and g is the same. A trivial S-band condensate throughout the structure and a mode (E=1.4678 eV) 
well separated from the bulk, located at the zigzag edge (dashed white line) are observed. (e) Mode 
tomography displaying a homogeneous trivial S-band condensate (ES=1.4673−1.4675 eV) within the 
pump spot diameter of 40 μm. The inset shows a microscopy image of the structure. (f) Mode tomography 
of the topological edge mode (Eedge=1.4678 eV) at the corner position of the sample and (g) at the same 
position as in (e). The mode is well located at the zigzag edge and clearly extends around the corner to the 
armchair configuration.  

 

Figure 4 | Chirality and propagation of the condensate. Spectroscopic hyperspectral measurement of the 
full S-band condensate (1.467 −1.468 eV) at the K,K’-points, including the energies linked to the 
topological edge modes for (a) B=+5 T and (b) B=−5 T. The zigzag edge is oriented in y-direction. (c) 
Polariton intensity ratio between the K’- and K-points in ky-direction (kx≃0) as a function of the applied 
magnetic field. The dominant propagation direction is inverted (yellow/red arrows) when the direction of 
the magnetic field is reversed. For B=0 T no dominant propagation direction is observed. The error bars 
originate from image distortions, inhomogeneities of the excitation, and uncertainties during data 
processing, and are estimated at 5%. 



Methods Section 

Basic sample characterization 

Honeycomb lattices of coupled micropillars were etched into a planar semiconductor Fabry-Pérot 

microcavity, grown by molecular beam epitaxy. The cavity consists of a GaAs λ-cavity equipped with 

three 16 nm wide In0.04Ga0.96As quantum wells sandwiched between two distributed Bragg reflectors with 

30 (35.5) Al0.10Ga0.90As/AlAs top (bottom) mirror pairs. The quantum wells were placed at the maximum 

of the electromagnetic field, resulting in a strong exciton-photon coupling with a Rabi splitting of 

4.3 meV (see extended data Fig. E1). The set of quantum wells emit with an exciton linewidth of 

γX = 1.2 meV (full width at half maximum), measured with the top mirror etched away. The quality factor 

of the cavity was determined experimentally by measuring the mode linewidth of a single large pillar at a 

negative (photonic) detuning δ ~ −11.5 meV to be ~13.000 (γC = 0.11 meV). The overall layer 

thicknesses decrease radially towards the outside of the wafer, effecting mainly the photonic mode, 

allowing to choose a certain exciton to photon detuning. By increasing the asymmetry between the cavity 

mode and the stopband center, the TE-TM splitting of the cavity mode is increased, mimicking an 

effective spin-orbit interaction [34].  However, the further the cavity mode is moved towards the edge of 

the stopband, the lower the reflectivity becomes, implying a lower Q-factor and larger polariton 

linewidth. Based on simulations and experience from previously grown samples, a DBR (cavity) 

asymmetry factor of 1.03 (0.91) – 1.00 (1.00) would be the symmetric case – was chosen for the micro-

cavities presented in this work, yielding a TE-TM splitting of approximately 600 µeV at k|| = 2.0 μm-1 (see 

extended data Fig. E2). Both the Indium content in the InGaAs quantum well and the quantum well 

thickness were optimized with regards to the smallest linewidth and largest Zeeman splitting. 4% Indium 

and 16 nm thickness yield a Zeeman splitting ΔEZ = 540 µeV at B = 5 T (see extended data Fig. E2). 

After sample growth, a honeycomb lattice of approximately 120 × 120 μm2 with a pillar diameter of 

d = 2.0 μm and an overlap v = a/d = 0.85 was defined using an electron beam lithography process and 



subsequent wet etching. Extended data Fig. E3 shows a microscope image of an intended defect in the 

form of a site missing in a zigzag edge of the honeycomb lattice (indicated by the red arrow).  

PL experiment description – Methods 

Non-resonant photoluminescence experiments with and without an applied magnetic field were carried 

out using a linearly polarized, pulsed titanium-sapphire laser with a repetition rate of 82 MHz and a pulse 

length of approximately 2 ps. The wavelength of the laser was set to be λL = 792 nm, coinciding with the 

first high-energy stopband minimum of the microcavity structure. 

The emission was collected using a microscope objective (20x, NA = 0.4) and imaged at the entrance slit 

of a Czerny-Turner spectrometer, equipped with a charge-coupled device (CCD) camera with a resolution 

of ~20 µeV. A motorized imaging lens allows for automated hyperspectral images ((kx, ky) vs. E) and 

mode tomographies ((x, y) vs. E). 

The sample was mounted in a liquid Helium flow cryostat (Oxford, SpectraMag), operating at a 

temperature of T = 4 K. Using superconducting coils, a magnetic field B = −5 T to +5 T can be applied 

in Faraday geometry.  

Bloch mode calculations for polarion honeycomb lattices 

A widely accepted model describes the dynamics of excitons with spin-up (ψ+) and spin-down  

(ψ−) coupled to cavity photons carrying the right (E+) and the left (E−) circular polarizations, respectively 

[s1], and is governed by  

𝑖𝑖ħ𝜕𝜕𝑡𝑡𝐸𝐸± =  �−  ħ2

2𝑚𝑚𝐶𝐶
∇⊥

2 + 𝑉𝑉(𝐫𝐫) + 𝜔𝜔𝐶𝐶 − 𝑖𝑖𝑖𝑖� 𝐸𝐸± + 𝛽𝛽�𝜕𝜕𝑥𝑥 ∓ 𝑖𝑖𝜕𝜕𝑦𝑦�2𝐸𝐸∓ + ħΩ𝑅𝑅𝜓𝜓± + 𝐸𝐸𝑝𝑝
±𝑒𝑒−𝑖𝑖𝜔𝜔𝑝𝑝𝑡𝑡   (1.1) 

𝑖𝑖ħ 𝜕𝜕𝑡𝑡𝜓𝜓± = �𝜔𝜔𝐸𝐸 − 𝑖𝑖𝑖𝑖 ± Δ𝐵𝐵
2

� 𝜓𝜓± + ħΩ𝑅𝑅𝐸𝐸±          (1.2) 

Here, the normalization is such that |E±|2 and |ψ±|2 are the number of particles per unit area. The quantities 

ωC and ωE represent the energies of bare photons and excitons, respectively. In the present configuration 

the photon-exciton detuning is negative δ = (ωC − ωE) = −6 meV. The photon-exciton coupling strength is 



given by the parameter ħΩR, which defines the Rabi splitting as 2ħΩR = 4.5 meV.  Here, mC = 32.3 * 10-

6 me is the effective photon mass in the planar region and me is the free electron mass. The effective mass 

of excitons is mE ≃ 105 mC. An external photonic potential V(r) is defined within the unit cell of the 

honeycomb structure, constructed of circular mesas (micropillars). We assume that the potential is 

V(r) = 30 meV outside the mesas and zero otherwise. In what follows, we assume that the intensity of 

polaritons is weak enough and thus neglect nonlinear interactions between them. The TE-TM splitting of 

the cavity modes gives rise to the linear coupling between right- and left- circular polarizations and is 

denoted by β [35]. We account for the magnetic field via Zeeman splitting ΔB of the excitonic states in the 

quantum wells.  

Equations (1.1) and (1.2) allow for accurate simulation of the propagation of the chiral modes coherently 

injected into the system by means of the external coherent radiation �𝐸𝐸𝑝𝑝
±�, with an appropriately chosen 

frequency (ωp) within the topological gap. First, we calculate the energy-momentum band structure of the 

honeycomb lattices, using a full description of the Bloch modes taking into account all relevant system 

parameters. For this aim, we solve the following eigenvalue problem for the energy ħμ(kb) of the Bloch 

mode with the Bloch vector kb = {kbx, kby} 

                                ħµ�𝒌𝒌𝑏𝑏 � � 𝒑𝒑𝑏𝑏
+(𝑟𝑟, 𝑘𝑘𝑏𝑏)

𝒑𝒑𝑏𝑏
−(𝑟𝑟, 𝑘𝑘𝑏𝑏) � = � L� Ĉ+

Ĉ− L�
� � 𝒑𝒑𝑏𝑏

+(𝑟𝑟, 𝑘𝑘𝑏𝑏)
𝒑𝒑𝑏𝑏

−(𝑟𝑟, 𝑘𝑘𝑏𝑏) �.                                                  (2) 

The circularly polarized polaritonic wave-functions are 𝒑𝒑𝑏𝑏
±(𝒓𝒓, 𝒌𝒌𝒃𝒃) = {𝑐𝑐𝑏𝑏

±(𝒓𝒓, 𝒌𝒌𝒃𝒃), 𝑥𝑥𝑏𝑏
±(𝒓𝒓, 𝒌𝒌𝒃𝒃)}, where the 

functions 𝑐𝑐𝑏𝑏
±(𝒓𝒓, 𝒌𝒌𝒃𝒃) and 𝑥𝑥𝑏𝑏

±(𝒓𝒓, 𝒌𝒌𝒃𝒃) describe the amplitude distributions of the photonic and excitonic 

component of the Bloch modes in real space, defined in the plane of the microcavity r = {x, y}. The 

diagonal of the matrix in eqn. (2) describes the single-particle coupled states of excitons and photons and 

is given by the expression 

𝐿𝐿� = � 
𝜔𝜔𝐶𝐶 +  𝑉𝑉(𝒓𝒓) − ħ2
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2
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2�.             (3) 



The coupling between both polarization components is given by the off-diagonal matrices Ĉ±  

�̂�𝐶± = � 
𝛽𝛽(�∇��⃗ ⊥ + 𝑖𝑖 𝑘𝑘𝑏𝑏����⃗ ��𝑒𝑒𝐱𝐱 ∓ 𝑖𝑖𝑒𝑒𝐲𝐲�)2 0

0 ± Δ𝐵𝐵
2

 
�,                                    (4) 

 

which includes both the TE-TM splitting of the photonic modes and the Zeeman splitting of the excitons 

due to the applied magnetic field. The unit vectors ex,y shows the directions of cartesian coordinates (x, y) 

in the plane of the microcavity. To reduce drastically computational efforts, it is convenient to solve the 

eigenvalue problem in polaritonic basis after diagonalization of the matrix 𝐿𝐿�, describing the coupling 

between photons and excitons. In this case, the effective parameter for the TE-TM splitting βeff ~ β |C|2 

and the Zeeman splitting Δeff ~ ΔB |X|2 are scaled with the photonic and excitonic components of the 

polaritons, respectively (where |C|2 and |X|2 are the Hopfield coefficients, calculated for the respective 

Bloch mode. 

Physically, the excitation occurs by coherent illumination with linearly polarized light at the frequency 

within the topological gap. The seeding pulse duration is about 40 ps. Other parameters: ΔB = ±0.8 meV, 

β = 0.20 meVμm2, βeff = 0.15 meVμm2, γ = 0.01 meV, polariton lifetime τ = 35 ps, pillar diameter 

d = 2.0 μm, center-to-center separations a = 2 μm. 

 

Polariton chiral edge mode propagating around a corner and defect. 

Using the Bloch mode calculations described above, we now excite the system resonantly and calculate 

its evolution in time for a Zeeman splitting of ΔB = +0.8 meV. The polaritons propagate along the edge 

and around the 90° corner as expected for a topological edge mode (see Fig. E4). In the same way we find 

that the edge mode avoids an artificial defect in form of a site missing in a zigzag chain (see Fig. E5). 



Tight-binding model 

A tight-binding model describing the artificial graphene band structure is given in eqns. (5) and (6). Here, 

t is the nearest neighbor, t‘ the next-nearest neighbor interaction and k|| the measured in-plane lattice 

vector being linked to the measured polariton emission angle θ by k|| = (ω/c) sin(θ). 

𝐸𝐸ℎ𝑐𝑐�𝒌𝒌||� = 𝐸𝐸0 ± 𝑡𝑡�3 + 𝑓𝑓(𝒌𝒌||) − 𝑡𝑡′𝑓𝑓�𝒌𝒌||�            (5) 

𝑓𝑓�𝒌𝒌||� = 2 𝑐𝑐𝑐𝑐𝑐𝑐(√3𝑘𝑘𝑦𝑦𝑎𝑎) + 4 𝑐𝑐𝑐𝑐𝑐𝑐 �
√3
2

𝑘𝑘𝑦𝑦𝑎𝑎� 𝑐𝑐𝑐𝑐𝑐𝑐 �
3
2

𝑘𝑘𝑥𝑥𝑎𝑎�           (6) 

The resulting band structure of this model is presented as a fit to the data in Fig. 2 (f) of the main text in 

red and yellow. 

Gap measurement 

When an external magnetic field is applied to this lattice, a band gap is predicted to open at the Dirac 

points. We make use of a λ/4 polarisation series to detect this gap. In Extended Data Fig. E6, exemplary 

images of the λ/4-series at external magnetic fields of B = 0 T and 5 T are presented. The energetic 

position of the Dirac point was evaluated by fitting a Lorentzian peak profile to the line spectrum through 

the Dirac point at K′. The peak positions were plotted against the angle of the λ/4-waveplate. Assuming 

that the position of the peak corresponds linearly to its polarisation, the resulting graph can be fitted using 

equation 

𝐼𝐼(𝜙𝜙) = 1
2

�𝑆𝑆0  +  𝑆𝑆1 𝑐𝑐𝑐𝑐𝑐𝑐2 (2𝜙𝜙) +  𝑆𝑆2 𝑐𝑐𝑖𝑖𝑠𝑠 (2𝜙𝜙)𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜙𝜙) + 𝑆𝑆3 𝑐𝑐𝑖𝑖𝑠𝑠 (2𝜙𝜙)�,        

normally used to fit the peak intensity in a λ/4-series with a constant peak position. At B = +5 T a band 

gap of Eg = (108 ± 32) μeV was evaluated. The peak movement with no external magnetic field applied 



can be attributed to imperfections of the λ/4-waveplate and was used as an uncertainty of the band gap 

that opens when an external magnetic field is applied. 

 

Input/Output characteristics and linewidth 

By increasing the power of the non-resonant pump laser, measuring the intensity and linewidth we 

determine the threshold characteristic of the polaritons as shown in extended data Fig. E7. At a typical 

threshold of Pthr ≈ 1.8 mW a distinct non-linear increase in intensity as well as a sudden decrease in 

linewidth can be observed. The mode accociated with the gap mode becomes visible around P = Pthr. 

 

Ginzburg-Landau calculations of polariton condensation into a topological edge mode 

 

In theoretical proposals such as [15-17]; no particular form of excitation was considered explicitly. It is 

clear from section (S1) that a resonant excitation is able to directly populate the various modes. For the 

case of non-resonant excitation, further theoretical work is needed to access the physics of polariton 

condensation into a chiral topological egde mode, described in Fig. 3 of the main text.  

 Here we use the driven-dissipative Ginzburg-Landau model, frequently used to describe the spatial form 

of polariton condensates: 
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            (7) 



Here 𝜓𝜓+ and 𝜓𝜓− denote the two spin components of the two-dimensional polariton wavefunction. The 

operator 𝐸𝐸�0 corresponds to the bare kinetic energy of polaritons, modelled with an effective mass m. The 

potential V(r) accounts for the honeycomb lattice structure and Δeff is the Zeeman splitting caused by the 

applied magnetic field. The two spin components are coupled by the off-diagonal spin-orbit coupling 

term, physically corresponding to a TE-TM splitting with strength βeff. 

The linear gain and loss in the system is described by the term W(r) = P(r) – Γ(r), where P(r) represents 

the spatially dependent non-resonant pumping and Γ is a spatially dependent dissipation rate. We assume 

that the loss is higher outside the micropillar regions. For the system to form a steady state it is important 

to consider also nonlinear loss terms. For simplicity, we neglect the effect of polariton-polariton 

interactions, which is valid provided we operate not too far above the condensation threshold. 

Before solving the full nonlinear problem, it is instructive to consider the spectrum of linearized modes, 

obtained by neglecting the nonlinear term. Considering a strip geometry, where the potential is periodic in 

the x-direction and bounded in the orthogonal y-direction, the Bloch theory can be used to obtain the 

complex bandstructure of the system eigenmodes with respect to a wavevector kx. The result is shown in 

Extended Data Fig. E8a. For parameters comparable with the experiment, we obtain a topological 

bandgap bridged by chiral edge states. A slight asymmetry in the edge states occurs due to the pumping 

P(r), which is taken periodic in the 𝑥𝑥-direction (to maintain validity of the Bloch theory) but 

preferentially localized near the bottom edge of the strip. 

Extended Data Fig. E8b shows the imaginary parts of the same eigenmodes. Remarkably, the chiral edge 

state is found to have the largest imaginary component, meaning that it has a larger gain than other states 

and would be preferentially selected during polariton condensation. However, it should be noted that in 

principle there are an infinite number of energy states obtainable with the present theory and it is in 

practice necessary to introduce an energy cutoff to solve the Bloch Hamiltonian.  



To rule out the potential population of higher energy states, we rely on solution of the full nonlinear 

problem, propagating eqn. (7) in time to a steady state. Here we indeed find condensation in a chiral edge 

state, as illustrated with the color scale in Extended Data Fig. E8a. A slight shift from the results of the 

linear bandstructure calculation occurs due to the nonlinear term. Extended Data Fig. E8c shows the 

obtained wavefunction in real space, which is indeed localized at the edge excited by the pumping, 

perfectly agreeing with the experimental findings. In addition to explaining our experimental observation 

of chiral current under non-resonant pump, these theoretical results predict a new phenomenon of 

polariton lasing in a topological edge state: a topological polariton laser [30,31]. However, we point out 

that a strict comparison between a topological laser and a non-topological laser (as in [31]) cannot be 

easily presented, since the topological gap cannot be closed, without changing a wide range of other 

system parameters. 

 

Real-space mode tomographies at B = 0 T and B = −5 T 

For the sake of completeness, we perform the same mode tomographies, displayed in the main text in Fig. 

3 at B = +5 T at B = 0 T and B = −5 T. The results are displayed in Extended Data Fig. E9 (a-d, B = 0 T; 

e-h, B = −5 T). While for the B = 0 T case, no distinct edge mode is observed, the behavior for B = −5 T is 

qualitatively similar to B = +5 T, as expected. 
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Extended Data Figure Legends 

 

Extended Data Figure E1 | White light reflectivity measurements as a function of the detuning. Reflectivity measurements 

as a function of the detuning. A distinct anticrossing behavior, with a Rabi splitting of 2ħΩR = 4.3 meV can be observed. The 

measurements were performed on a sample piece with approximately 15 mirror pairs removed from the top DBR in order to 

increase the signal quality. Inset: Fitted peak positions vs. detuning. 

 

Extended Data Figure E2 | Zeeman splitting and TE-TM splitting for a III-V microcavity hosting In0.04Ga0.96As quantum 

wells. (left) Zeeman-splitting with regard to the magnetic field including second order polynomial fits as a guide to the eye. 

Sample A is the one used in this experiment. Inset: Exemplary data of central emission energies for a λ/4-series with a sine fit. 

(right) Experimentally determined TE-TM-splittings at various detunings ΔE for sample A including fits with modified photonic 

Hopfield coefficients (red). 

 

Extended Data Figure E3| Microscopy image of a zigzag edge polariton honeycomb lattice with an intended defect. Image 

of the honeycomb lattice with d = 2.0 µm and v = 0.85, with an intended defect in the zigzag chain, selected for experiments in an 

external magnetic field. 

 

Extended Data Figure E4 | Polariton chiral edge mode propagating around a corner. (a-c) Propagation dynamics of edge 

modes injected coherently into the topological gap and calculated within the model 1. Shown is the right moving propagation for 

the positive value splitting ΔB = +0.8 meV (|Δeff| = 0.2 meV) and β = 0.20 meVμm2 (βeff = 0.15 meVμm2). A linearly-polarized 

narrow coherent seeding beam injects both polarization components into the mesa marked by the red circle. At t ≈ 100 ps the 

mode propagates around the corner from the zigzag edge into the armchair one. 

 

Extended Data Figure E5 | Polariton chiral edge mode propagating and avoiding a defect. (a-c) Propagation dynamics of 

edge modes injected coherently into the topological gap and calculated within the model 1. Shown is the right moving 

propagation for the positive value splitting ΔB = +0.8 meV (|Δeff| = 0.2 meV) and β = 0.20 meVμm2 (βeff = 0.15 meVμm2). A 

linearly-polarized narrow coherent seeding beam injects both polarization components into the mesa. At t ≈ 85 ps the mode 

propagates around the defect in the zigzag chain, marked by the red circle. 

 



Extended Data Figure E6| Topological gap measurement. λ/4-plate measurement at B = 0 T (blue) and B = +5 T (red) at the 

K-point yielding a band gap of Eg = (108 ± 32) μeV. 

 

Extended Data Figure E7 | Input/Output characteristics and linewidth behavior as a function of pump power. Below 

threshold the gap and bulk mode cannot be distinguised. At a typical threshold Pth ≈ 1.8 mW a distinct non-linear increase in 

intensity as well as a sudden decrease in linewidth can be observed. Here, the populated gap modes show similar behavior to the 

bulk mode. 

 

Extended Data Figure E8 | Driven-dissipative Gross-Pitaevskii calculation of polariton condensation into topological edge 

mode. (a) Bandstructure of polaritons in a honeycomb lattice. The dotted curves represent the dispersion of the linear 

eigenmodes of a strip, color coded to represent the localization on the bottom edge (red), upper edge (green) and in the bulk 

(blue). The shaded region represents the energy and momentum of the polariton steady state from solving the driven-dissipative 

Gross-Pitaevskii equation. (b) Imaginary components of the linear eigenmodes. The largest imaginary part corresponds to an 

edge state (the color coding is the same as in (a)), suggesting that the edge state is most likely to be populated with increasing 

pumping. (c) Edge state obtained from solution of the driven-dissipative Gross-Pitaevskii equation. Parameters: Δeff = 0.3 meV, 

βeff = 0.2 meVμm2. The effective mass, m, was taken as 1.3*10-4 of the free electron mass; the potential of depth 0.5 meV was 

constructed from a honeycomb lattice of cylinders of radius 1 µm and center-center separation 1.7 µm; the pump spot was taken 

as a Gaussian centered on the strip edge with extent 7.5 µm in the y-direction. A spatially uniform decay rate of 0.2 meV was 

supplemented with a 1.7 meV decay in the region outside the cylinders. 

 

Extended Data Figure E9 | Real-space mode tomographies of a polariton condensate at B = 0 T and B = −5 T. (a)–(d) 

Measurements at B = 0 T. (a) Real-space spectrum in x-direction perpendicular to the zigzag edge along the straight white line 

in (d). The real-space x-axis is consistent between Extended data Figs. E9 a, b and d. The dashed white line marks the physical 

edge of the lattice. Only a trivial S-band condensate can be observed throughout the structure. (b) Mode tomography displaying 

the topologically trivial S-band condensate at ES = 1.4673 – 1.4675 eV. A relatively homogeneous condensate within the pump 

spot diameter of 40 μm is observed. The inset shows a microscopy image of the structure. (c) Mode tomography of the energy 

Eedge = 1.4678 eV for comparison at the corner position and at the edge (d) of the sample. Without magnetic field, no localized 

edge mode can be observed. (e)-(h) Measurements at B = −5 T (fully analogous to Fig. 3 d-g in the main text). (e) Real-space 

spectrum in x-direction perpendicular to the zigzag edge along the straight white line in (h). The real-space x-axis is consistent 

between Extended data Figs. E9 e, f and h. The dashed white line marks the physical edge of the lattice. A trivial S-band 

condensate can be observed throughout the structure. At E = 1.4678 eV again we observe the appearance of a localized mode, 

well separated from the bulk and located at the zigzag edge. (f) Mode tomography displaying the topologically trivial S-band 

condensate at ES = 1.4673 – 1.4675 eV. A relatively homogeneous condensate within the pump spot diameter of 40 μm is 

observed. The inset shows a microscopy image of the structure. (g) Mode tomography of the topological edge mode at 

Eedge = 1.4678 eV at the corner position and at the edge (h) of the sample, showing clearly that the mode extends around the 

corner from the zigzag to the armchair configuration and avoids the intentional defect, both without bulk scattering. 
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