870 research outputs found

    Tracing large-scale structures in circumstellar disks with ALMA

    Full text link
    Planets are supposed to form in circumstellar disks. The gravitational potential of a planet perturbs the disk and leads to characteristic structures, i.e. spiral waves and gaps, in the disk's density profile. We perform a large-scale parameter study of the observability of these planet-induced structures in circumstellar disks with ALMA. On the basis of HD and MHD simulations, we calculated the disk temperature structure and (sub)mm images of these systems. These were used to derive simulated ALMA images. Because appropriate objects are frequent in Taurus, we focused on a distance of 140pc and a declination of 20{\deg}. The explored range of star-disk-planet configurations consists of 6 HD simulations (including magnetic fields and different planet masses), 9 disk sizes, 15 total disk masses, 6 different central stars, and two different grain size distributions. On almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disk structures induced by planet-disk interaction or by the influence of magnetic fields on the wavelength range between 0.4 and 2.0mm. In most cases, the optimum angular resolution is limited by the sensitivity. However, within the range of typical masses of protoplanetary disks (0.1-0.001Msun) the disk mass has a minor impact on the observability. It is possible to resolve disks down to 2.67e-6Msun and trace gaps induced by a planet with M_p/M_s = 0.001 in disks with 2.67e-4Msun with a signal-to-noise ratio greater than three. The central star has a major impact on the observability of gaps, as well as the considered maximum grainsize of the dust in the disk. In general, it is more likely to trace planet-induced gaps in our MHD models, because gaps are wider in the presence of magnetic fields. We also find that zonal flows resulting from MRI create gap-like structures in the disk's re-emission radiation, which are observable with ALMA.Comment: 17 pages, 21 figure

    Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations

    Get PDF
    Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we want to study axisymmetric and non-axisymmetric structures, evocated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. We performed non-ideal global 3D MHD stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters are taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of circumstellar disks. The 2D temperature and density profiles are calculated consistently from a given surface density profile and Monte-Carlo radiative transfer. The 2D Ohmic resistivity profile is calculated using a dust chemistry model. The magnetic field is a vertical net flux field. The resulting dust reemission provides the basis for the simulation of observations with ALMA. The fiducial model develops a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure is strong enough to stop the radial drift of particles. In addition, we observe the generation of vortices by the Rossby wave instability (RWI) at the jumps location close to 60 AU. The vortices are steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict the feasibility to observe such large scale structures appearing in magnetized disks without having a planet.Comment: Language update, added comments, added citations, in press. (A&A

    Short-time critical dynamics at perfect and non-perfect surface

    Full text link
    We report Monte Carlo simulations of critical dynamics far from equilibrium on a perfect and non-perfect surface in the 3d Ising model. For an ordered initial state, the dynamic relaxation of the surface magnetization, the line magnetization of the defect line, and the corresponding susceptibilities and appropriate cumulant is carefully examined at the ordinary, special and surface phase transitions. The universal dynamic scaling behavior including a dynamic crossover scaling form is identified. The exponent β1\beta_1 of the surface magnetization and β2\beta_2 of the line magnetization are extracted. The impact of the defect line on the surface universality classes is investigated.Comment: 11figure

    Planet-induced disk structures: A comparison between (sub)mm and infrared radiation

    Full text link
    Young giant planets, which are embedded in a circumstellar disk, will significantly perturb the disk density distribution. This effect can potentially be used as an indirect tracer for planets. We investigate the feasibility of observing planet-induced gaps in circumstellar disks in scattered light. We perform 3D hydrodynamical disk simulations combined with subsequent radiative transfer calculations in scattered light for different star, disk, and planet configurations. The results are compared to those of a corresponding study for the (sub)mm thermal re-emission. The feasibility of detecting planet-induced gaps in scattered light is mainly influenced by the optical depth of the disk and therefore by the disk size and mass. Planet-induced gaps are in general only detectable if the photosphere of the disks is sufficiently disturbed. Within the limitations given by the parameter space here considered, we find that gap detection is possible in the case of disks with masses below 1043M\sim 10^{-4\dots-3} \, \rm M_\odot. Compared to the disk mass that marks the lower Atacama Large (Sub)Millimeter Array (ALMA) detection limit for the thermal radiation re-emitted by the disk, it is possible to detect the same gap both in re-emission and scattered light only in a narrow range of disk masses around 104M\sim 10^{-4} \, \rm M_\odot, corresponding to 16%16\% of cases considered in our study.Comment: 4 pages, 6 figure

    Surface critical behavior in fixed dimensions d<4d<4: Nonanalyticity of critical surface enhancement and massive field theory approach

    Full text link
    The critical behavior of semi-infinite systems in fixed dimensions d<4d<4 is investigated theoretically. The appropriate extension of Parisi's massive field theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent Φ(d=3)\Phi (d=3), for which we obtain the values Φ(n=1)0.54\Phi (n=1)\simeq 0.54 and Φ(n=0)0.52\Phi (n=0)\simeq 0.52, considerably lower than the previous ϵ\epsilon-expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0md10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent ηsp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of ηsp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    Neural representation of newly instructed rule identities during early implementation trials

    No full text
    By following explicit instructions, humans instantaneously get the hang of tasks they have never performed before. We used a specially calibrated multivariate analysis technique to uncover the elusive representational states during the first few implementations of arbitrary rules such as ‘for coffee, press red button’ following their first-time instruction. Distributed activity patterns within the ventrolateral prefrontal cortex (VLPFC) indicated the presence of neural representations specific of individual stimulus-response (S-R) rule identities, preferentially for conditions requiring the memorization of instructed S-R rules for correct performance. Identity-specific representations were detectable starting from the first implementation trial and continued to be present across early implementation trials. The increasingly fluent application of novel rule representations was channelled through increasing cooperation between VLPFC and anterior striatum. These findings inform representational theories on how the prefrontal cortex supports behavioral flexibility specifically by enabling the ad-hoc coding of newly instructed individual rule identities during their first-time implementation

    Isolated adult hypoganglionosis presenting as sigmoid volvulus: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Isolated hypoganglionosis is a rare cause of intestinal innervation defects. It is characterized by sparse and small myenteric ganglia, absent or low acetylcholinesterase activity in the lamina propria and hypertrophy of the muscularis mucosae, principally in the region of the colon and rectum. It accounts for 5% of all intestinal neuronal malformations. To the best of our knowledge, only 92 cases of isolated hypoganglionosis were reported from 1978 to 2009. Isolated hypoganglionosis usually manifests as enterocolitis or poor bowel function, and is diagnosed in infancy or childhood. We report the first case of isolated hypoganglionosis presenting with sigmoid volvulus in a 34-year-old woman.</p> <p>Case presentation</p> <p>A 34-year-old Asian woman had progressively increasing abdominal pain and had not passed stool or flatus for two days. A physical examination revealed a distended abdomen with sluggish gut sounds. A computerized tomography (CT) scan demonstrated gross dilatation of the sigmoid colon (maximal diameter 14.3 cm) suggestive of sigmoid volvulus. During emergency laparotomy, sigmoidectomy with a side-to-side colorectal anastomosis was performed. Histopathology of the resected specimen showed occasional ganglion cells and hypertrophied nerve bundles in the muscle layers, suggesting hypoganglionosis. Colonoscopy was performed, and multiple full-thickness biopsies were taken that showed hypoganglionosis of the entire large bowel. Our patient underwent total colectomy with an ileorectal anastomosis. Subsequently our patient reported a dramatic improvement in her bowel function.</p> <p>Conclusions</p> <p>Isolated hypoganglionosis is a rare cause of intestinal dysganglionosis and cannot be differentiated from Hirschsprung's disease based on clinical presentation. This case report describes an atypical presentation of the disease. A definitive diagnosis requires histopathological analysis of full-thickness intestinal biopsies. Treatment should be tailored to the extent of hypoganglionosis.</p

    Kapazitive pH-Sensoren auf der Basis von makroporösem Silizium mit Doppelisolatorschicht aus thermisch oxidiertem SiO2 und LPCVD-Si3N4

    Get PDF
    Halbleitersensoren für den Ionennachweis in wässrigen Lösungen lassen sich einfach und kostengünstig als kapazitive Feldeffektstrukturen in Form von sogenannten EIS- (Elektrolyt-Isolator-Silizium) Sensoren realisieren. Allerdings sind solche Sensoren begrenzt miniaturisierbar, da ihre geometrische Fläche direkt proportional in das Meßsignal, die Kapazitätsänderung, eingeht. Um diesen Nachteil zu umgehen, haben wir auf dem ersten BioSensorSymposium in München (1999) einen neuartigen Lösungsansatz vorgeschlagen, bei dem makroporöses Silizium als Basismaterial für verschiedene sensoraktive Substanzen, wie z.B. pH-sensitive Schichten und Enzyme eingesetzt werden kann. Bei der Verwendung von makroporösem Silizium als Transducermaterial hat die durch den Herstellungsprozeß bedingte Vergrößerung der sensoraktiven Oberfläche nämlich eine Zunahme der Meßkapazität zur Folge. Aufgrund der Ätzanordnung zur Herstellung von porösem Silizium war es bisher allerdings nur möglich, Niedertemperaturprozesse, wie das PECVD (Plasma-Enhanced-Chemical-Vapour-Deposition)-Verfahren, zur Abscheidung von SiO2 als Isolatorschicht und Si3N4 als pH-sensitiver Schicht zu verwenden. Solche Sensoren besitzen allerdings keine hohe Langzeitstabilität im Meßbetrieb (ca. 2 Monate), da die dielektrischen Schichten unzureichende Korrosionseigenschaften aufweisen. Zur Verbesserung der Langzeitstabilität von Sensoren aus porösem Silizium bietet sich die Verwendung von thermisch oxidiertem Silizium als Isolatorschicht und das Abscheiden von Siliziumnitrid als pH-sensitive Schicht mittels LPCVD (Low-Pressure- Chemical-Vapour-Deposition)-Verfahren an. Vorangegangene Arbeiten aus unserer Arbeitsgruppe hatten gezeigt, daß planare Sensoren mit LPCVD-Nitrid als Transducermaterial über einen Zeitraum von sieben Monaten konstant hohe Sensitivitäten nahe dem Nernst-Idealwert aufweisen

    Modified critical correlations close to modulated and rough surfaces

    Get PDF
    Correlation functions are sensitive to the presence of a boundary. Surface modulations give rise to modified near surface correlations, which can be measured by scattering probes. To determine these correlations, we develop a perturbative calculation in deformations in height from a flat surface. The results, combined with a renormalization group around four dimensions, are also used to predict critical behavior near a self-affinely rough surface. We find that a large enough roughness exponent can modify surface critical behavior.Comment: 4 pages, 1 figure. Revised version as published in Phys. Rev. Lett. 86, 4596 (2001
    corecore