3,719 research outputs found

    MOND rotation curves for spiral galaxies with Cepheid-based distances

    Get PDF
    Rotation curves for four spiral galaxies with recently determined Cepheid-based distances are reconsidered in terms of modified Newtonian dynamics (MOND). For two of the objects, NGC 2403 and NGC 7331, the rotation curves predicted by MOND are compatible with the observed curves when these galaxies are taken to be at the Cepheid distance. For NGC 3198, the largest distance for which reasonable agreement is obtained is 10% smaller than the Cepheid-based distance; i.e., MOND clearly prefers a smaller distance. This conclusion is unaltered when new near-infrared photometry of NGC 3198 is taken as the tracer of the stellar mass distribution. For the large Sc spiral, NGC 2841, MOND requires a distance which is at least 20% larger than the Cepheid-based distance. However, the discrepancy of the Tully-Fisher and SNIa distances with the Cepheid determination casts some doubt upon the Cepheid method in this case.Comment: Accepted for publication in astronomy and astrophysics 9 pages, 9 figure

    The role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene

    Full text link
    We address the role of excitonic coulping on the nature of photoexcitations in the conjugated polymer regioregular poly(3-hexylthiophene). By means of temperature-dependent absorption and photoluminescence spectroscopy, we show that optical emission is overwhelmingly dominated by weakly coupled H-aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks provides a powerfully simple means to extract the magnitude of the intermolecular coupling energy, approximately 5 and 30 meV for films spun from isodurene and chloroform solutions respectively.Comment: 10 pages, 4 figures, published in Phys. Rev. Let

    The Globular Cluster Systems around NGC 3311 and NGC 3309

    Full text link
    We present extensive new photometry in (g',i') of the large globular cluster (GC) system around NGC 3311, the central cD galaxy in the Hydra cluster. Our GMOS data cover a 5.5' field of view and reach a limiting magnitude i' = 26, about 0.5 magnitude fainter than the turnover point of the GC luminosity function. We find that NGC 3311 has a huge population of ~16, 000 GCs, closely similar to the prototypical high specific frequency Virgo giant M87. The color-magnitude distribution shows that the metal-poor blue GC sequence and the metal-richer red sequence are both present, with nearly equal numbers of clusters. Bimodal fits to the color distributions confirm that the blue sequence shows the same trend of progressively increasing metallicity with GC mass that has previously been found in many other large galaxies; the correlation we find corresponds to a scaling of GC metallicity with mass of Z ~ M^0.6 . By contrast, the red sequence shows no change of mean metallicity with mass, but it shows an upward extension to much higher than normal luminosity into the UCD-like range, strengthening the potential connections between massive GCs and UCDs. The GC luminosity function, which we measure down to the turnover point at M_I = -8.4, also has a normal form like those in other giant ellipticals. Within the Hydra field, another giant elliptical NGC 3309 is sitting just 100" from the cD NGC 3311. We use our data to solve simultaneously for the spatial structure and total GC populations of both galaxies at once. Their specific frequencies are S_N (NGC 3311) = 12.5 +/- 1.5 and S_N (NGC 3309) = 0.6 +/-0.4. NGC 3311 is completely dominant and entirely comparable with other cD-type systems such as M87 in Virgo.Comment: 15 pages, 15 figures. Accepted to the Astrophysical Journal. Version with higher resolution figures is available at http://www.thewehners.net/astro/papers/wehner_n3311_highres.pd

    Photogeneration Dynamics of a Soliton Pair in Polyacetylene

    Full text link
    Dynamical process of the formation of a soliton pair from a photogenerated electron-hole pair in polyacetylene is studied numerically by adopting the SSH Hamiltonian. A weak local disorder is introduced in order to trigger the formation. Starting from an initial configuration with an electron at the bottom of the conduction band and a hole at the top of the valence band, separated by the Peierls gap, the time dependent Schro¨{\rm \ddot{o}}ndinger equation for the electron wave functions and the equation of motion for the lattice displacements are solved numerically. After several uniform oscillations of the lattice system at the early stage, a large distortion corresponding to a pair of a soliton and an anti-soliton develops from a point which is determined by the location and type of the disorder. In some cases, two solitons run in opposite directions, leaving breather like oscillations behind, and in other cases they form a bound state emitting acoustic lattice vibrational modes.Comment: 16 pages 7 figure

    Emission-Line Galaxies from the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) Grism Survey. II: The Complete Sample

    Get PDF
    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0< z<1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 Ha, [OIII] and/or [OII] emission lines have been identified in the PEARS sample of ~906 galaxies down to a limiting flux of ~1e-18 erg/s/cm^2. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M_* > 1e9} M_sun decreases by an order of magnitude at z<0.5 relative to the number at 0.5<z<0.9 in support of the argument for galaxy downsizing.Comment: Submitted. 48 pages. 19 figures. Accepted to Ap

    Further Definition of the Mass-Metallicity Relation in Globular Cluster Systems Around Brightest Cluster Galaxies

    Full text link
    We combine the globular cluster data for fifteen Brightest Cluster Galaxies and use this material to trace the mass-metallicity relations (MMR) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor (MP) subpopulation which corresponds to a scaling of heavy-element abundance with cluster mass Z ~ M^(0.30+/-0.05). No trend is seen for the metal-rich (MR) subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the globular cluster populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the colour-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for globular cluster formation in which the MMR is determined by GC self-enrichment during their brief formation period.Comment: 35 pages, 20 figures. Accepted by Astronomical Journal. Complete preprint including high resolution figures available at http://www.physics.mcmaster.ca/~cockcroft/MMRpape

    A Survey of Merger Remnants II: The Emerging Kinematic and Photometric Correlations

    Full text link
    This paper is the second in a series exploring the properties of 51 {\it optically} selected, single-nuclei merger remnants. Spectroscopic data have been obtained for a sub-sample of 38 mergers and combined with previously obtained infrared photometry to test whether mergers exhibit the same correlations as elliptical galaxies among parameters such as stellar luminosity and distribution, central stellar velocity dispersion (σ\sigma∘_{\circ}), and metallicity. Paramount to the study is to test whether mergers lie on the Fundamental Plane. Measurements of σ\sigma∘_{\circ} have been made using the Ca triplet absorption line at 8500 {\AA} for all 38 mergers in the sub-sample. Additional measurements of σ\sigma∘_{\circ} were made for two of the mergers in the sub-sample using the CO absorption line at 2.29 \micron. The results indicate that mergers show a strong correlation among the parameters of the Fundamental Plane but fail to show a strong correlation between σ\sigma∘_{\circ} and metallicity (Mg2_{2}). In contrast to earlier studies, the σ\sigma∘_{\circ} of the mergers are consistent with objects which lie somewhere between intermediate-mass and luminous giant elliptical galaxies. However, the discrepancies with earlier studies appears to correlate with whether the Ca triplet or CO absorption lines are used to derive σ\sigma∘_{\circ}, with the latter almost always producing smaller values. Finally, the photometric and kinematic data are used to demonstrate for the first time that the central phase-space density of mergers are equivalent to elliptical galaxies. This resolves a long-standing criticism of the merger hypothesis.Comment: Accepted Astronomical Journal (to appear in January 2006
    • …
    corecore