674 research outputs found

    Mission Requirements for Exobiological Measurements on Venus

    Get PDF
    Mission planning for exobiological measurements on Venu

    Discriminative prototype selection methods for graph embedding

    Full text link
    Graphs possess a strong representational power for many types of patterns. However, a main limitation in their use for pattern analysis derives from their difficult mathematical treatment. One way of circumventing this problem is that of transforming the graphs into a vector space by means of graph embedding. Such an embedding can be conveniently obtained by using a set of prototype graphs and a dissimilarity measure. However, when we apply this approach to a set of class-labelled graphs, it is challenging to select prototypes capturing both the salient structure within each class and inter-class separation. In this paper, we introduce a novel framework for selecting a set of prototypes from a labelled graph set taking their discriminative power into account. Experimental results showed that such a discriminative prototype selection framework can achieve superior results in classification compared to other well-established prototype selection approaches. © 2012 Elsevier Ltd

    Digitally range-gated optical frequency domain reflectometry

    Get PDF
    We present a new optical frequency domain reflectometry technique which permits high frequency sweep repetition rates without sacrificing range. This technique could thus be adapted for remote and distributed acoustic sensing over long lengths of fibre

    Towards rewritable multilevel optical data storage in single nanocrystals

    Get PDF
    Published 26 Apr 2018Novel approaches for digital data storage are imperative, as storage capacities are drastically being outpaced by the exponential growth in data generation. Optical data storage represents the most promising alternative to traditional magnetic and solid-state data storage. In this paper, a novel and energy efficient approach to optical data storage using rare-earth ion doped inorganic insulators is demonstrated. In particular, the nanocrystalline alkaline earth halide BaFCl:Sm is shown to provide great potential for multilevel optical data storage. Proof-of-concept demonstrations reveal for the first time that these phosphors could be used for rewritable, multilevel optical data storage on the physical dimensions of a single nanocrystal. Multilevel information storage is based on the very efficient and reversible conversion of Sm³⁺ to Sm²⁺ ions upon exposure to UV-C light. The stored information is then read-out using confocal optics by employing the photoluminescence of the Sm²⁺ ions in the nanocrystals, with the signal strength depending on the UV-C fluence used during the write step. The latter serves as the mechanism for multilevel data storage in the individual nanocrystals, as demonstrated in this paper. This data storage platform has the potential to be extended to 2D and 3D memory for storage densities that could potentially approach petabyte/cm³ levels.Nicolas Riesen, Xuanzhao Pan, Kate Badek, Yinlan Ruan, Tanya M. Monro, Jiangbo Zhao, Heike Ebendorff-Heidepriem, and Hans Riese

    Penicillium verrucosum occurrence and Ochratoxin A contents in organically cultivated grain with special reference to ancient wheat types and drying practice

    Get PDF
    This study addresses the relationship between the ochratoxigenic strains of Penicillium verrucosum and ochratoxin A (OTA) contents in organically cultivated grain. It included 37 combined, non-dried grain samples from farmers with no drying facilities as well as 19 non-dried and 22 dried samples from six farms with on-farm drying facilities (Case studies 1-6). The study focused on the ancient wheat type spelt but also included samples of wheat, rye, barley, oats, triticale, emmer, and einkorn. All 78 samples were analysed for moisture content (MC) and occurrence of P. verrucosum. The latter was assessed by plating non-disinfected kernels on DYSG agar and counting those contaminated by the fungus. Fiftyfive samples were analysed for OTA. Most of the combine harvested samples (82%) were contaminated with P. verrucosum prior to drying. This was ascribed to difficult harvest conditions and many samples of spelt, which was significantly more contaminated by P. verrucosum than oats, wheat and barley. Though not statistically significant, the results also indicated that spelt was more contaminated than rye, which is usually regarded the most sensitive small grain cereal. No correlation was found between number of kernels contaminated by P. verrucosum and OTA content. Despite many non-dried samples being contaminated by P. verrucosum, only two exceeded the EU maximum limit for grain (5 ng OTA g-1), both being spring spelt with 18 and 92 ng g-1, respectively. The problems were most likely correlated to a late harvest and high MC of the grain. The case studies showed exceedings of the maximum limit in a batch of dried oats and spring wheat, respectively, probably to be explained by insufficient drying of late harvested grain with high MC. Furthermore, our results clearly indicate that OTA is not produced in significant amounts in samples with MCs below 17%. All dried samples with MCs above 18% exceeded the 5 ng OTA g-1 limit in grain. However, no correlation between MC and the amount of OTA produced was found

    Whispering-Gallery Mode lasers for biosensing: a rationale for reducing the lasing threshold

    Get PDF
    Abstract not availableAlexandre François, Nicolas Riesen, Hong Ji, Shahraam Afshar Vahida, Tanya M. Monr

    Main-Belt Comet P/2012 T1 (PANSTARRS)

    Full text link
    We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.Comment: 15 pages, 4 figures, accepted for publication in ApJ Letter

    Frequency distribution in intraoperative stimulation-evoked EMG responses during selective dorsal rhizotomy in children with cerebral palsy—part 2: gender differences and left-biased asymmetry

    Get PDF
    Introduction: Spinal reflexes reorganize in cerebral palsy (CP), producing hyperreflexia and spasticity. CP is more common among male infants, and gender might also influence brain and spinal-cord reorganization. This retrospective study investigated the frequency of higher-graded EMG responses elicited by electrical nerve-root stimulation during selective dorsal rhizotomy (SDR), prior to partial nerve- root deafferentation, considering not only segmental level and body side, but also gender. Methods: Intraoperative neuromonitoring (IOM) was used in SDR to pinpoint the rootlets most responsible for exacerbated stimulation-evoked EMG patterns recorded from lower-limb muscle groups. Responses were graded according to an objective response-classification system, ranging from no abnormalities (grade 0) to highly abnormal (grade 4+), based on ipsilateral spread and contralateral involvement. Non-parametric analysis of data with repeated measures was primarily used in investigating the frequency distribution of these various EMG response grades. Over 7000 rootlets were stimulated, and the results for 65 girls and 81 boys were evaluated, taking changes in the composition of patient groups into account when considering GMFCS levels. Results: The distribution of graded EMG responses varied according to gender, laterality, and level. Higher-graded EMG responses were markedly more frequent in the boys and at lower segmental levels (L5, S1). Left-biased asymmetry in higher-graded rootlets was also more noticeable in the boys and in patients with GMFCS level I. A close link was observed between higher-grade assessments and left-biased asymmetry. Conclusions: Detailed insight into the patient's initial spinal-neurofunctional state prior to deafferentation suggests that differences in asymmetrical spinal reorganization might be attributable to a hemispheric imbalance

    Entropic graph embedding via multivariate degree distributions

    Get PDF
    Although there are many existing alternative methods for using structural characterizations of undirected graphs for embedding, clustering and classification problems, there is relatively little literature aimed at dealing with such problems for directed graphs. In this paper we present a novel method for characterizing graph structure that can be used to embed directed graphs into a feature space. The method commences from a characterization based on the distribution of the von Neumann entropy of a directed graph with the in and out-degree configurations associated with directed edges. We start from a recently developed expression for the von Neumann entropy of a directed graph, which depends on vertex in-degree and out-degree statistics, and thus obtain a multivariate edge-based distribution of entropy. We show how this distribution can be encoded as a multi-dimensional histogram, which captures the structure of a directed graph and reflects its complexity. By performing principal components analysis on a sample of histograms, we embed populations of directed graphs into a low dimensional space. Finally, we undertake experiments on both artificial and real-world data to demonstrate that our directed graph embedding method is effective in distinguishing different types of directed graphs
    corecore