34 research outputs found

    Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains.

    No full text
    Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3′,5′-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm

    Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus)

    Get PDF
    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification

    Vegetal fibers in polymeric composites: a review

    Full text link

    Antiviral Res.

    No full text

    Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia : Caudata)

    No full text
    Steinfartz S, Kusters D, Tautz D. Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia : Caudata). Molecular Ecology Notes. 2004;4(4):626-628.Ten tetranucleotide and one dinucleotide polymorphic microsatellite loci were cloned and characterized for the Fire salamander (Salamandra salamandra) from 34 populations in Germany. A high genetic diversity (5-22 alleles per locus) and heterozygosity (40.6-95.2%) were observed for these markers. Chord distances for population comparisons of the western evolutionary recolonization lineage in the area near Cologne ranged from 0.139 to 0.366, whereas population comparisons between the western and eastern lineage ranged from 0.541 to 0.670. When compared with classical isolation methods, a sufficient number of polymorphic microsatellites can be obtained for the Fire salamander only from specially enriched sublibraries

    Creld1 regulates myocardial development and function.

    No full text
    CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function
    corecore