424 research outputs found

    A double-blind randomized controlled trial of maternal postpartum deworming to improve infant weight gain in the Peruvian Amazon

    Get PDF
    Background : Nutritional interventions targeting the critical growth and development period before two years of age can have the greatest impact on health trajectories over the life course. Compelling evidence has demonstrated that interventions investing in maternal health in the first 1000 days of life are beneficial for both mothers and their children. One such potential intervention is deworming integrated into maternal postpartum care in areas where soil-transmitted helminth (STH) infections are endemic. Methodology/Principal Findings : From February to August 2014, 1010 mother-infant pairs were recruited into a trial aimed at assessing the effectiveness of maternal postpartum deworming on infant and maternal health outcomes. Following delivery, mothers were randomly assigned to receive either single-dose 400 mg albendazole or placebo. Participants were followed-up at 1 and 6 months postpartum. There was no statistically significant difference in mean weight gain between infants in the experimental and control groups (mean difference: -0.02; 95% CI: -0.1, 0.08) at 6 months of age. Further, deworming had no effect on measured infant morbidity indicators. However, ad hoc analyses restricted to mothers who tested positive for STHs at baseline suggest that infants of mothers in the experimental group had greater mean length gain in cm (mean difference: 0.8; 95% CI: 0.1, 1.4) and length-for-age z-score (mean difference: 0.5; 95% CI: 0.2, 0.8) at 6 months of age. Conclusions/Significance : In a study population composed of both STH-infected and uninfected mothers, maternal postpartum deworming was insufficient to impact infant growth and morbidity indicators up to 6 months postpartum. Among STH-infected mothers, however, important improvements in infant length gain and length-for-age were observed. The benefits of maternal postpartum deworming should be further investigated in study populations having higher overall prevalences and intensities of STH infections and, in particular, where whipworm and hookworm infections are of public health concern

    The Danish Shoulder Arthroplasty Registry: clinical outcome and short-term survival of 2,137 primary shoulder replacements

    Get PDF
    The Danish Shoulder Arthroplasty Registry (DSR) was established in 2004. Data are reported electronically by the surgeons. Patient-reported outcome is collected 10–14 months postoperatively using the Western Ontario osteoarthritis of the shoulder index (WOOS). 2,137 primary shoulder arthroplasties (70% women) were reported to the registry between January 2006 and December 2008. Mean age at surgery was 69 years (SD 12). The most common indications were a displaced proximal humeral fracture (54%) or osteoarthritis (30%). 61% were stemmed hemiarthroplasties, 28% resurfacing hemiarthroplasties, 8% reverse shoulder arthroplasties, and 3% total arthroplasties. Median WOOS was 59% (IQR: 37–82). 5% had been revised by the end of June 2010. The most frequent indications for revision were dislocation or glenoid attrition

    Maternal Deworming Research Study (MADRES) protocol: a double-blind, placebo-controlled randomised trial to determine the effectiveness of deworming in the immediate postpartum period

    Get PDF
    Introduction: Soil-transmitted helminth infections are endemic in 114 countries worldwide, and cause the highest burden of disease among all neglected tropical diseases. The WHO includes women of reproductive age as a high-risk group for infection. The primary consequence of infection in this population is anaemia. During lactation, anaemia may contribute to reduced quality and quantity of milk, decreasing the duration of exclusive breastfeeding and lowering the age at weaning. To date, no study has investigated the effects of maternal postpartum deworming on infant or maternal health outcomes. Methods and analysis: A single-centre, parallel, double-blind, randomised, placebo-controlled trial will be carried out in Iquitos, Peru, to assess the effectiveness of integrating single-dose 400 mg albendazole into routine maternal postpartum care. A total of 1010 mother-infant pairs will be randomised to either the intervention or control arm, following inhospital delivery and prior to discharge. Participants will be visited in their homes at 1, 6, 12 and 24 months following delivery for outcome ascertainment. The primary outcome is infant mean weight gain between birth and 6 months of age. Secondary outcomes include other infant growth indicators and morbidity, maternal soil-transmitted helminth infection and intensity, anaemia, fatigue, and breastfeeding practices. All statistical analyses will be performed on an intention-to-treat basis. Ethics and dissemination: Research ethics board approval has been obtained from the McGill University Health Centre (Canada), the Asociacion Civil Impacta Salud y Educacion (Peru) and the Instituto Nacional de Salud (Peru). A data safety and monitoring committee is in place to oversee study progression and evaluate adverse events. The results of the analyses will be published in peer-reviewed journals, and presented at national and international conferences

    The Hydrogel Endovascular Aneurysm Treatment Trial (HEAT): A Randomized Controlled Trial of the Second-Generation Hydrogel Coil

    Get PDF
    © 2020 Congress of Neurological Surgeons 2020. BACKGROUND: Aneurysm recurrence after coiling has been associated with aneurysm growth, (re)hemorrhage, and a greater need for follow-up. The second-generation HydroCoil Embolic System (HES; MicroVention, Inc) consists of a platinum core with integrated hydrogel and was developed to reduce recurrence through enhancing packing density and healing within the aneurysm. OBJECTIVE: To compare recurrence between the second-generation HES and bare platinum coil (BPC) in the new-generation Hydrogel Endovascular Aneurysm Treatment Trial (HEAT). METHODS: HEAT is a randomized, controlled trial that enrolled subjects with ruptured or unruptured 3- to 14-mm intracranial aneurysms amenable to coiling. The primary endpoint was aneurysm recurrence using the Raymond-Roy scale. Secondary endpoints included minor and major recurrence, packing density, adverse events related to the procedure and/or device, mortality, initial complete occlusion, aneurysm retreatment, hemorrhage from target aneurysm during follow-up, aneurysm occlusion stability, and clinical outcome at final follow-up. RESULTS: A total of 600 patients were randomized (HES, n = 297 and BPC, n = 303), including 28% with ruptured aneurysms. Recurrence occurred in 11 (4.4%) subjects in the HES arm and 44 (15.4%) subjects in the BPC arm (P =. 002). While the initial occlusion rate was higher with BPC, the packing density and both major and minor recurrence rates were in favor of HES. Secondary endpoints including adverse events, retreatment, hemorrhage, mortality, and clinical outcome did not differ between arms. CONCLUSION: Coiling of small-to-medium aneurysms with second-generation HES resulted in less recurrence when compared to BPC, without increased harm. These data further support the use of the second-generation HES for the embolization of intracranial aneurysms. Video Abstract: 10.1093/neuros/nyaa006 nyaa006Media1 613226478400

    The Pathogenic Properties of a Novel and Conserved Gene Product, KerV, in Proteobacteria

    Get PDF
    Identification of novel virulence factors is essential for understanding bacterial pathogenesis and designing antibacterial strategies. In this study, we uncover such a factor, termed KerV, in Proteobacteria. Experiments carried out in a variety of eukaryotic host infection models revealed that the virulence of a Pseudomonas aeruginosa kerV null mutant was compromised when it interacted with amoebae, plants, flies, and mice. Bioinformatics analyses indicated that KerV is a hypothetical methyltransferase and is well-conserved across numerous Proteobacteria, including both well-known and emerging pathogens (e.g., virulent Burkholderia, Escherichia, Shigella, Vibrio, Salmonella, Yersinia and Brucella species). Furthermore, among the 197 kerV orthologs analyzed in this study, about 89% reside in a defined genomic neighborhood, which also possesses essential DNA replication and repair genes and detoxification gene. Finally, infection of Drosophila melanogaster with null mutants demonstrated that KerV orthologs are also crucial in Vibrio cholerae and Yersinia pseudotuberculosis pathogenesis. Our findings suggested that KerV has a novel and broad significance as a virulence factor in pathogenic Proteobacteria and it might serve as a new target for antibiotic drug design

    Pseudomonas Aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus Aureus in a Model of Cystic Fibrosis Respiratory Infection

    Get PDF
    While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF), yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus. Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), and rhamnolipids—each required for efficient killing of S. aureus. These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureus

    Involvement of Skeletal Muscle Gene Regulatory Network in Susceptibility to Wound Infection Following Trauma

    Get PDF
    Despite recent advances in our understanding the pathophysiology of trauma, the basis of the predisposition of trauma patients to infection remains unclear. A Drosophila melanogaster/Pseudomonas aeruginosa injury and infection model was used to identify host genetic components that contribute to the hyper-susceptibility to infection that follows severe trauma. We show that P. aeruginosa compromises skeletal muscle gene (SMG) expression at the injury site to promote infection. We demonstrate that activation of SMG structural components is under the control of cJun-N-terminal Kinase (JNK) Kinase, Hemipterous (Hep), and activation of this pathway promotes local resistance to P. aeruginosa in flies and mice. Our study links SMG expression and function to increased susceptibility to infection, and suggests that P. aeruginosa affects SMG homeostasis locally by restricting SMG expression in injured skeletal muscle tissue. Local potentiation of these host responses, and/or inhibition of their suppression by virulent P. aeruginosa cells, could lead to novel therapies that prevent or treat deleterious and potentially fatal infections in severely injured individuals

    Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis

    Get PDF
    BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals
    • …
    corecore