146 research outputs found

    Narrow Radiative Recombination Continua: A Signature of Ions Crossing the Contact Discontinuity of Astrophysical Shocks

    Get PDF
    X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v ~ 1000 km/s) as it collides with an earlier circumstellar slow wind (v ~ 10 km/s). In theory, the shocked fast wind (hot bubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT ~ 100 eV) crossing the CD and penetrating the cold nebular gas (kT ~ 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30 3639 indicating bare C VII ions are recombining with cool electrons at kT_e=1.7+-1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30 3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to Delta kT > 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be a common feature of stellar wind shocks.Comment: 14 pages, 5 figures, accepted to ApJ. Corrected typos, minor modifications to eq. 5 and corresponding tex

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base

    The X-Ray Spectrum of a Planetary Nebula at High Resolution: Chandra Gratings Spectroscopy of BD+30 3639

    Get PDF
    We present the results of the first X-ray gratings spectroscopy observations of a planetary nebula (PN), the X-ray-bright, young BD+30 3639. We observed BD+30 3639 for a total of 300 ks with the Chandra X-ray Observatory's Low Energy Transmission Gratings in combination with its Advanced CCD Imaging Spectrometer(LETG/ACIS-S). The LETG/ACIS-S spectrum of BD+30 3639 is dominated by H-like resonance lines of O viii and C sc vi and the He-like triplet line complexes of Ne ix and O vii. Other H-like resonance lines, such as N vii, as well as lines of highly ionized Fe, are weak or absent. Continuum emission is evident over the range 6-18 A. Spectral modeling indicates the presence of a range of plasma temperatures from T~1.7x10^6 K to 2.9x10^6 K and an intervening absorbing column N_H~2.4x10^21 cm-2. The same modeling conclusively demonstrates that C and Ne are highly enhanced, with abundance ratios of C/O~15-45 and Ne/O~3.3-5.0 (90% confidence ranges, relative to the solar ratios), while N and Fe are depleted, N/O~0.0-1.0 and Fe/O~0.1-0.4. The intrinsic luminosity of the X-ray source determined from the modeling and the measured flux (F_X = 4.1x10^-13 ergs cm-2 s-1) is L_X~8.6x10^32 erg s-1(assuming D = 1.2kpc). These gratings spectroscopy results are generally consistent with earlier results obtained from X-ray CCD imaging spectroscopy of BD+30 3639, but are far more precise. The tight constraints placed on the (nonsolar) abundances directly implicate the present-day central star -- hence, ultimately, the intershell region of the progenitor asymptotic giant branch star -- as the origin of the shocked plasma now emitting in X-rays.Comment: Accepted for publication in ApJ (29 pages, 8 figures, 4 tables, Abstract abridged

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    Ethical issues relating to the banking of umbilical cord blood in Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico.</p> <p>Discussion</p> <p>A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord.</p> <p>Summary</p> <p>Conflicts between moral principles and economic interests (non-moral principles) cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks' performance.</p

    TMPRSS2/ERG Promotes Epithelial to Mesenchymal Transition through the ZEB1/ZEB2 Axis in a Prostate Cancer Model

    Get PDF
    Prostate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer progression. However, the unveiling of more specific pathways in which TMPRSS2/ERG takes part, requires further investigation. Using immortalized prostate epithelial cells we were able to show that TMPRSS2/ERG over-expressing cells undergo an Epithelial to Mesenchymal Transition (EMT), manifested by acquisition of mesenchymal morphology and markers as well as migration and invasion capabilities. These findings were corroborated in vivo, where the control cells gave rise to discrete nodules while the TMPRSS2/ERG-expressing cells formed malignant tumors, which expressed EMT markers. To further investigate the general transcription scheme induced by TMPRSS2/ERG, cells were subjected to a microarray analysis that revealed a distinct EMT expression program, including up-regulation of the EMT facilitators, ZEB1 and ZEB2, and down-regulation of the epithelial marker CDH1(E-Cadherin). A chromatin immunoprecipitation assay revealed direct binding of TMPRSS2/ERG to the promoter of ZEB1 but not ZEB2. However, TMPRSS2/ERG was able to bind the promoters of the ZEB2 modulators, IL1R2 and SPINT1. This set of experiments further illuminates the mechanism by which the TMPRSS2/ERG fusion affects prostate cancer progression and might assist in targeting TMPRSS2/ERG and its downstream targets in future drug design efforts

    Mechanical Bonds and Topological Effects in Radical Dimer Stabilization

    Get PDF
    While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)^(•+) dimers are similar in the two catenanes, the radical cationic (TTF^(•+))_2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex. The electrochemical behavior of these three radically configurable isomers demonstrates that a fundamental relationship exists between topology and redox properties

    Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    Get PDF
    Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as
    corecore