490 research outputs found

    Depression, diabetes, their comorbidity and all-cause and cause-specific mortality:a prospective cohort study

    Get PDF
    AIMS/HYPOTHESIS: The aim of this study was to investigate the risks of all-cause and cause-specific mortality among participants with neither, one or both of diabetes and depression in a large prospective cohort study in the UK. METHODS: Our study population included 499,830 UK Biobank participants without schizophrenia and bipolar disorder at baseline. Type 1 and type 2 diabetes and depression were identified using self-reported diagnoses, prescribed medication and hospital records. Mortality was identified from death records using the primary cause of death to define cause-specific mortality. We performed Cox proportional hazards models to estimate the risk of all-cause mortality and mortality from cancer, circulatory disease and causes of death other than circulatory disease or cancer among participants with either depression (n=41,791) or diabetes (n=22,677) alone and with comorbid diabetes and depression (n=3597) compared with the group with neither condition (n=431,765), adjusting for sociodemographic and lifestyle factors, comorbidities and history of CVD or cancer. We also investigated the interaction between diabetes and depression. RESULTS: During a median of 6.8 (IQR 6.1–7.5) years of follow-up, there were 13,724 deaths (cancer, n=7976; circulatory disease, n=2827; other causes, n=2921). Adjusted HRs of all-cause mortality and mortality from cancer, circulatory disease and other causes were highest among people with comorbid depression and diabetes (HRs 2.16 [95% CI 1.94, 2.42]; 1.62 [95% CI 1.35, 1.93]; 2.22 [95% CI 1.80, 2.73]; and 3.60 [95% CI 2.93, 4.42], respectively). The risks of all-cause, cancer and other mortality among those with comorbid depression and diabetes exceeded the sum of the risks due to diabetes and depression alone. CONCLUSIONS/INTERPRETATION: We confirmed that depression and diabetes individually are associated with an increased mortality risk and also identified that comorbid depression and diabetes have synergistic effects on the risk of all-cause mortality that are largely driven by deaths from cancer and causes other than circulatory disease and cancer. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains peer-reviewed but unedited supplementary material available at 10.1007/s00125-022-05723-4

    Defining remission of type 2 diabetes in research studies: A systematic scoping review

    Get PDF
    BackgroundRemission has been identified as a top priority by people with type 2 diabetes. Remission is commonly used as an outcome in research studies; however, a widely accepted definition of remission of type 2 diabetes is lacking. A report on defining remission was published (but not formally endorsed) in Diabetes Care, an American Diabetes Association (ADA) journal. This Diabetes Care report remains widely used. It was the first to suggest 3 components necessary to define the presence of remission: (1) absence of glucose-lowering therapy (GLT); (2) normoglycaemia; and (3) for duration ≥1 year. Our aim is to systematically review how remission of type 2 diabetes has been defined by observational and interventional studies since publication of the 2009 report.Methods and findingsFour databases (MEDLINE, EMBASE, Cochrane Library, and CINAHL) were searched for studies published from 1 September 2009 to 18 July 2020 involving at least 100 participants with type 2 diabetes in their remission analysis, which examined an outcome of type 2 diabetes remission in adults ≥18 years and which had been published in English since 2009. Remission definitions were extracted and categorised by glucose-lowering therapy, glycaemic thresholds, and duration. A total of 8,966 titles/abstracts were screened, and 178 studies (165 observational and 13 interventional) from 33 countries were included. These contributed 266 definitions, of which 96 were unique. The 2009 report was referenced in 121 (45%) definitions. In total, 247 (93%) definitions required the absence of GLT, and 232 (87%) definitions specified numeric glycaemic thresholds. The most frequently used threshold was HbA1cConclusionsWe found that there is substantial heterogeneity in the definition of type 2 diabetes remission in research studies published since 2009, at least partly reflecting ambiguity in the 2009 report. This complicates interpretation of previous research on remission of type 2 diabetes and the implications for people with type 2 diabetes. Any new consensus definition of remission should include unambiguous glycaemic thresholds and emphasise duration. Until an international consensus is reached, studies describing remission should clearly define all 3 components of remission.Systematic review registrationPROSPERO CRD42019144619

    Discrimination of Potent Inhibitors of Toxoplasma gondii Enoyl-Acyl Carrier Protein Reductase by a Thermal Shift Assay

    Get PDF
    Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway that is distinct from the type I pathway found in humans. Enoyl-acyl carrier protein reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogues for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds that inhibited TgENR at low nanomolar concentrations were identified but could not be further differentiated because of the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of the reduced nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide (NAD+) cofactor. We found that all of the inhibitors bind to a TgENR–NAD+ complex but that they differed in their dependence on NAD+ concentration. Ultimately, we were able to identify compounds that bind to the TgENR–NAD+ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data, and ADMET predictions allow for better discrimination between potent ENR inhibitors for the future development of medicine

    The Amidase Domain of Lipoamidase Specifically Inactivates Lipoylated Proteins In Vivo

    Get PDF
    BACKGROUND:In the 1950s, Reed and coworkers discovered an enzyme activity in Streptococcus faecalis (Enterococcus faecalis) extracts that inactivated the Escherichia. coli and E. faecalis pyruvate dehydrogenase complexes through cleavage of the lipoamide bond. The enzyme that caused this lipoamidase activity remained unidentified until Jiang and Cronan discovered the gene encoding lipoamidase (Lpa) through the screening of an expression library. Subsequent cloning and characterization of the recombinant enzyme revealed that lipoamidase is an 80 kDa protein composed of an amidase domain containing a classic Ser-Ser-Lys catalytic triad and a carboxy-terminal domain of unknown function. Here, we show that the amidase domain can be used as an in vivo probe which specifically inactivates lipoylated enzymes. METHODOLOGY/PRINCIPAL FINDINGS:We evaluated whether Lpa could function as an inducible probe of alpha-ketoacid dehydrogenase inactivation using E. coli as a model system. Lpa expression resulted in cleavage of lipoic acid from the three lipoylated proteins expressed in E. coli, but did not result in cleavage of biotin from the sole biotinylated protein, the biotin carboxyl carrier protein. When expressed in lipoylation deficient E. coli, Lpa is not toxic, indicating that Lpa does not interfere with any other critical metabolic pathways. When truncated to the amidase domain, Lpa retained lipoamidase activity without acquiring biotinidase activity, indicating that the carboxy-terminal domain is not essential for substrate recognition or function. Substitution of any of the three catalytic triad amino acids with alanine produced inactive Lpa proteins. CONCLUSIONS/SIGNIFICANCE:The enzyme lipoamidase is active against a broad range of lipoylated proteins in vivo, but does not affect the growth of lipoylation deficient E. coli. Lpa can be truncated to 60% of its original size with only a partial loss of activity, resulting in a smaller probe that can be used to study the effects of alpha-ketoacid dehydrogenase inactivation in vivo

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response

    Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability

    Get PDF
    Protecting the ocean has become a major goal of international policy as human activities increasingly endanger the integrity of the ocean ecosystem, often summarized as “ocean health.” By and large, efforts to protect the ocean have failed because, among other things, (1) the underlying socio-ecological pathways have not been properly considered, and (2) the concept of ocean health has been ill defined. Collectively, this prevents an adequate societal response as to how ocean ecosystems and their vital functions for human societies can be protected and restored. We review the confusion surrounding the term “ocean health” and suggest an operational ocean-health framework in line with the concept of strong sustainability. Given the accelerating degeneration of marine ecosystems, the restoration of regional ocean health will be of increasing importance. Our advocated transdisciplinary and multi-actor framework can help to advance the implementation of more active measures to restore ocean health and safeguard human health and well-being

    A diallel analysis of a maize donor population response to In vivo maternal haploid induction II: haploid male fertility

    Get PDF
    Doubled haploid (DH) lines are used in maize breeding to accelerate the breeding cycle and create homogenous inbred lines in as little as two seasons. These pure inbred lines allow breeders to quickly evaluate new cross combinations. There are two important steps in creating DH lines: 1) generation and selection of haploid progeny, and 2) genome doubling to create fertile, diploid inbreds. Colchicine is widely used to artificially double genomes in haploid plants, which is hazardous, expensive, and time consuming. In this study, three public inbred lines A427, A637, and NK778 were found to have substantial haploid male fertility (HMF). A six-parent full diallel between these three HMF lines and three non-HMF lines was created and HMF was scored. Diallel analysis revealed significant GCA estimates of up to 17% for HMF, as well as significant SCA effects of up to 25%. No significant reciprocal effects were found. HMF is promising to be incorporated into elite maize breeding programs to potentially overcome the need of using colchicine treatments for genome doubling. Colchicine aided doubling success rates varying from almost zero to 30%. HMF has an advantage over artificial genome doubling both in terms of increased success rates and decreased costs for DH line production

    Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons

    Get PDF
    Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of β-actin mRNA. Live cell imaging demonstrated that β-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, HAP1, KIF5A, and dynein heavy chain by lentiviral-based shRNAs resulted in a reduction in the transport of β-actin mRNA. These findings support a role for Htt in participating in the mRNA transport machinery that also contains HAP1, KIF5A, and dynein

    Characterization of the Conus bullatus genome and its venom-duct transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The venomous marine gastropods, cone snails (genus <it>Conus</it>), inject prey with a lethal cocktail of conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the study of vertebrate neurotransmission. <it>Conus bullatus </it>belongs to a clade of <it>Conus </it>species called <it>Textilia</it>, whose pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward a better understanding the enigmatic <it>Textilia </it>clade.</p> <p>Results</p> <p>We have carried out a sequencing survey of the <it>Conus bullatus </it>genome and venom-duct transcriptome. We find that conopeptides are highly expressed within the venom-duct, and describe an <it>in silico </it>pipeline for their discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and mobile element densities.</p> <p>Conclusions</p> <p>Our results provide the first global view of venom-duct transcription in any cone snail. A notable feature of <it>Conus bullatus </it>venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the remainder of <it>C. bullatus </it>transcriptome, consistent with the hypothesis that conopeptides are under diversifying selection.</p
    corecore