48 research outputs found

    Falling through the social safety net? Analysing non‐take‐up of minimum income benefit and monetary social assistance in Austria

    Get PDF
    Non‐take‐up of means tested benefits is a widespread phenomenon in European welfare states. The paper assesses whether the reform that replaced the monetary social assistance benefit by the minimum income benefit in Austria in 2010/11 has succeeded in increasing take up rates. We use EU‐SILC register data together with the tax‐benefit microsimulation model EUROMOD/SORESI. The results show that the reform led to a significant decrease of non‐take‐up from 53 to 30% in terms of the number of households and from 51 to 30% in terms of expenditure. Following the three‐t's (threshold, trigger, and trade‐off) introduced by Van Oorschot, estimates of a two‐stage Heckman selection model as well as expert interviews indicate that the taken measures include both threshold and trade‐off characteristics. Elements such as the higher degree of anonymity within the claiming process, the provision of health insurance, binding minimum standards, the limitation of the maintenance obligations, new regulations related to the liquidation of wealth, as well as the general coverage of the benefit reform in the media and in public discussions led to an improved access to the benefit

    Cyclic animation using Partial differential Equations

    Get PDF
    YesThis work presents an efficient and fast method for achieving cyclic animation using Partial Differential Equations (PDEs). The boundary-value nature associ- ated with elliptic PDEs offers a fast analytic solution technique for setting up a framework for this type of animation. The surface of a given character is thus cre- ated from a set of pre-determined curves, which are used as boundary conditions so that a number of PDEs can be solved. Two different approaches to cyclic ani- mation are presented here. The first consists of using attaching the set of curves to a skeletal system hold- ing the animation for cyclic motions linked to a set mathematical expressions, the second one exploits the spine associated with the analytic solution of the PDE as a driving mechanism to achieve cyclic animation, which is also manipulated mathematically. The first of these approaches is implemented within a framework related to cyclic motions inherent to human-like char- acters, whereas the spine-based approach is focused on modelling the undulatory movement observed in fish when swimming. The proposed method is fast and ac- curate. Additionally, the animation can be either used in the PDE-based surface representation of the model or transferred to the original mesh model by means of a point to point map. Thus, the user is offered with the choice of using either of these two animation repre- sentations of the same object, the selection depends on the computing resources such as storage and memory capacity associated with each particular application

    Methanethiol-dependent dimethylsulfide production in soil environments

    Get PDF
    Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 Όmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates

    Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures

    Get PDF
    This is the final version. Available on open access from the Finnish Peatland Society via the DOI in this record. Globally, major efforts are being made to restore peatlands to maximise their resilience to anthropogenic climate change, which puts continuous pressure on peatland ecosystems and modifies the geography of the environmental envelope that underpins peatland functioning. A probable effect of climate change is reduction in the waterlogged conditions that are key to peatland formation and continued accumulation of carbon (C) in peat. C sequestration in peatlands arises from a delicate imbalance between primary production and decomposition, and microbial processes are potentially pivotal in regulating feedbacks between environmental change and the peatland C cycle. Increased soil temperature, caused by climate warming or disturbance of the natural vegetation cover and drainage, may result in reductions of long-term C storage via changes in microbial community composition and metabolic rates. Moreover, changes in water table depth alter the redox state and hence have broad consequences for microbial functions, including effects on fungal and bacterial communities especially methanogens and methanotrophs. This article is a perspective review of the effects of climate change and ecosystem restoration on peatland microbial communities and the implications for C sequestration and climate regulation. It is authored by peatland scientists, microbial ecologists, land managers and non-governmental organisations who were attendees at a series of three workshops held at The University of Manchester (UK) in 2019–2020. Our review suggests that the increase in methane flux sometimes observed when water tables are restored is predicated on the availability of labile carbon from vegetation and the absence of alternative terminal electron acceptors. Peatland microbial communities respond relatively rapidly to shifts in vegetation induced by climate change and subsequent changes in the quantity and quality of below-ground C substrate inputs. Other consequences of climate change that affect peatland microbial communities and C cycling include alterations in snow cover and permafrost thaw. In the face of rapid climate change, restoration of a resilient microbiome is essential to sustaining the climate regulation functions of peatland systems. Technological developments enabling faster characterisation of microbial communities and functions support progress towards this goal, which will require a strongly interdisciplinary approach.Natural Environment Research Council (NERC

    Optimizing chronic pain treatment with enhanced neuroplastic responsiveness: A pilot randomized controlled trial

    No full text
    Chronic pain affects mental and physical health and alters brain structure and function. Interventions that reduce chronic pain are also associated with changes in the brain. A number of non-invasive strategies can promote improved learning and memory and increase neuroplasticity in older adults. Intermittent fasting and glucose administration represent two such strategies with the potential to optimize the neurobiological environment to increase responsiveness to recognized pain treatments. The purpose of the pilot study was to test the feasibility and acceptability of intermittent fasting and glucose administration paired with a recognized pain treatment activity, relaxation and guided imagery. A total of 32 adults (44%W, 56%M), 50 to 85 years of age, with chronic knee pain for three months or greater participated in the study. Four sessions were completed over an approximate two-week period. Findings indicate the ability to recruit, randomize, and retain participants in the protocol. The procedures and measures were reasonable and completed without incident. Participant adherence was high and exit interview feedback positive. In summary, the pilot study was feasible and acceptable, providing the evidence necessary to move forward with a larger clinical trial
    corecore