1,832 research outputs found
Weld analysis and control system
The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters
Electrospray sample deposition for matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry with attomole detection limits
Electrospray sample deposition was explored for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). In this method, nanoliter volumes of matrix/analyte mixture were electrosprayed from a high voltage biased (1–2 kV) fused-silica capillary onto a grounded MALDI plate mounted 100–500 Μm from the capillary outlet. Electrospray deposition with these conditions produced sample spots 200–300 Μm in diameter thus matching the laser spot size. Varying spray voltage and distance resulted in different crystal sizes and volatilization rates for Α -cyano-4-hydroxycinnamic acid matrix. Best results were obtained when the sample was deposited as wet droplets as opposed to deposition as dried solid. Under ‘wet-spray’ conditions, 2–4 Μm diameter crystals were formed and detection limits for several neuropeptides were 0.7–25 amol. Samples could be pre-concentrated on the plate by spraying continuously and allowing sample to evaporate in a small spot. Sample volumes as large as 580 nL were deposited yielding a detection limit of 35 pM for neurotensin 1-11. Electrospray sample deposition yielded similar results when using atmospheric pressure-MALDI coupled with a quadrupole ion trap mass spectrometer, except that the sensitivity was ∼seven-fold worse. Copyright © 2004 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35082/1/1458_ftp.pd
Parameter optimization by using differential elimination: a general approach for introducing constraints into objective functions
<p>Abstract</p> <p>Background</p> <p>The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed. </p> <p>Results</p> <p>We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.</p> <p>Conclusions</p> <p>The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization. </p
Observation of Bose-Einstein Condensation in a Strong Synthetic Magnetic Field
Extensions of Berry's phase and the quantum Hall effect have led to the
discovery of new states of matter with topological properties. Traditionally,
this has been achieved using gauge fields created by magnetic fields or spin
orbit interactions which couple only to charged particles. For neutral
ultracold atoms, synthetic magnetic fields have been created which are strong
enough to realize the Harper-Hofstadter model. Despite many proposals and major
experimental efforts, so far it has not been possible to prepare the ground
state of this system. Here we report the observation of Bose-Einstein
condensation for the Harper-Hofstadter Hamiltonian with one-half flux quantum
per lattice unit cell. The diffraction pattern of the superfluid state directly
shows the momentum distribution on the wavefuction, which is gauge-dependent.
It reveals both the reduced symmetry of the vector potential and the twofold
degeneracy of the ground state. We explore an adiabatic many-body state
preparation protocol via the Mott insulating phase and observe the superfluid
ground state in a three-dimensional lattice with strong interactions.Comment: 6 pages, 5 figures. Supplement: 6 pages, 4 figure
Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge: HINDCAST AND VALIDATION OF HURRICANE IKE
[1] Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana‐Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied wave and surge response physics included: the capture of surge by the protruding Mississippi River Delta; the strong influence of wave radiation stress gradients on the Delta adjacent to the shelf break; the development of strong wind driven shore‐parallel currents and the associated geostrophic setup; the forced early rise of water in coastal bays and lakes facilitating inland surge penetration; the propagation of a free wave along the southern Texas shelf; shore‐normal peak wind‐driven surge; and resonant and reflected long waves across a wide continental shelf. Preexisting and rapidly deployed instrumentation provided the most comprehensive hurricane response data of any previous hurricane. More than 94 wave parameter time histories, 523 water level time histories, and 206 high water marks were collected throughout the Gulf in deep water, along the nearshore, and up to 65 km inland. Ike's highly varied physics were simulated using SWAN + ADCIRC, a tightly coupled wave and circulation model, on SL18TX33, a new unstructured mesh of the Gulf of Mexico, Caribbean Sea, and western Atlantic Ocean with high resolution of the Gulf's coastal floodplain from Alabama to the Texas‐Mexico border. A comprehensive validation was made of the model's ability to capture the varied physics in the system
Finding focus in a difficult landscape: Therapists’ experiences with challenging video guidance processes for parent–infant dyads
Marte Meo video guidance uses filmed interaction of the actual parent–infant dyad in the guidance of caregivers. Exploring the challenges that therapists meet in the guidance of parent–infant dyads may illuminate important aspects of the method itself as well as the therapists’ role and requirements. This could lead to method development and improved practice, but is hitherto little addressed. In this paper, we explore how skilled therapists experience and handle challenging or failing guidance processes with parent–infant dyads. We analyzed interviews with 13 Marte Meo therapists/supervisors using team-based reflexive thematic analysis. Four main themes were identified: promoting relational growth in a coercive context, building an alliance that feels safe for the parents, looking at positive moments in difficult lives, and handling intense feelings as a therapist. Our findings show that therapists experience specific therapeutic and ethical challenges with a vulnerable subgroup of parent–infant dyads where child protective issues arise, where caregivers’ insecurities impede the therapeutic relationship, and where caregivers have unsolved relational or mental health problems. The therapists’ role becomes pivotal and demanding with regard to the therapeutic alliance, the therapeutic interventions in the guidance process, and their own need for regulation, supervision, and structure. Identification of these vulnerable dyads early in the process could facilitate a better adaptation and practice of video guidance. Our findings suggest a need for supporting structures, clinical supervision, and training that address these challenges.publishedVersio
Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Synoptic Analysis, and Validation in Southern Louisiana
Hurricane Gustav (2008) made landfall in southern Louisiana on 1 September 2008 with its eye never closer than 75 km to New Orleans, but its waves and storm surge threatened to flood the city. Easterly tropical-storm-strength winds impacted the region east of the Mississippi River for 12-15 h, allowing for early surge to develop up to 3.5 m there and enter the river and the city's navigation canals. During landfall, winds shifted from easterly to southerly, resulting in late surge development and propagation over more than 70 km of marshes on the river's west bank, over more than 40 km of Caernarvon marsh on the east bank, and into Lake Pontchartrain to the north. Wind waves with estimated significant heights of 15 m developed in the deep Gulf of Mexico but were reduced in size once they reached the continental shelf. The barrier islands further dissipated the waves, and locally generated seas existed behind these effective breaking zones. The hardening and innovative deployment of gauges since Hurricane Katrina (2005) resulted in a wealth of measured data for Gustav. A total of 39 wind wave time histories, 362 water level time histories, and 82 high water marks were available to describe the event. Computational models-including a structured-mesh deepwater wave model (WAM) and a nearshore steady-state wave (STWAVE) model, as well as an unstructured-mesh "simulating waves nearshore'' (SWAN) wave model and an advanced circulation (ADCIRC) model-resolve the region with unprecedented levels of detail, with an unstructured mesh spacing of 100-200 m in the wave-breaking zones and 20-50 m in the small-scale channels. Data-assimilated winds were applied using NOAA's Hurricane Research Division Wind Analysis System (H*Wind) and Interactive Objective Kinematic Analysis (IOKA) procedures. Wave and surge computations from these models are validated comprehensively at the measurement locations ranging from the deep Gulf of Mexico and along the coast to the rivers and floodplains of southern Louisiana and are described and quantified within the context of the evolution of the storm
The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients
Background: Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients. Methods: Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination. Findings: Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response. Interpretation: Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response. Funding: JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care
- …