294 research outputs found
Detecting Extrasolar Planets with Integral Field Spectroscopy
Observations of extrasolar planets using Integral Field Spectroscopy (IFS),
if coupled with an extreme Adaptive Optics system and analyzed with a
Simultaneous Differential Imaging technique (SDI), are a powerful tool to
detect and characterize extrasolar planets directly; they enhance the signal of
the planet and, at the same time, reduces the impact of stellar light and
consequently important noise sources like speckles. In order to verify the
efficiency of such a technique, we developed a simulation code able to test the
capabilities of this IFS-SDI technique for different kinds of planets and
telescopes, modelling the atmospheric and instrumental noise sources. The first
results obtained by the simulations show that many significant extrasolar
planet detections are indeed possible using the present 8m-class telescopes
within a few hours of exposure time. The procedure adopted to simulate IFS
observations is presented here in detail, explaining in particular how we
obtain estimates of the speckle noise, Adaptive Optics corrections, specific
instrumental features, and how we test the efficiency of the SDI technique to
increase the signal-to-noise ratio of the planet detection. The most important
results achieved by simulations of various objects, from 1 M_J to brown dwarfs
of 30 M_J, for observations with an 8 meter telescope, are then presented and
discussed.Comment: 60 pages, 37 figures, accepted in PASP, 4 Tables adde
Measuring the Hidden Aspects of Solar Magnetism
2008 marks the 100th anniversary of the discovery of astrophysical magnetic
fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines
in sunspots. With the introduction of Babcock's photoelectric magnetograph it
soon became clear that the Sun's magnetic field outside sunspots is extremely
structured. The field strengths that were measured were found to get larger
when the spatial resolution was improved. It was therefore necessary to come up
with methods to go beyond the spatial resolution limit and diagnose the
intrinsic magnetic-field properties without dependence on the quality of the
telescope used. The line-ratio technique that was developed in the early 1970s
revealed a picture where most flux that we see in magnetograms originates in
highly bundled, kG fields with a tiny volume filling factor. This led to
interpretations in terms of discrete, strong-field magnetic flux tubes embedded
in a rather field-free medium, and a whole industry of flux tube models at
increasing levels of sophistication. This magnetic-field paradigm has now been
shattered with the advent of high-precision imaging polarimeters that allow us
to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar
magnetism that have been hidden to Zeeman diagnostics. It is found that the
bulk of the photospheric volume is seething with intermediately strong, tangled
fields. In the new paradigm the field behaves like a fractal with a high degree
of self-similarity, spanning about 8 orders of magnitude in scale size, down to
scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Small-scale solar magnetic fields
As we resolve ever smaller structures in the solar atmosphere, it has become
clear that magnetism is an important component of those small structures.
Small-scale magnetism holds the key to many poorly understood facets of solar
magnetism on all scales, such as the existence of a local dynamo, chromospheric
heating, and flux emergence, to name a few. Here, we review our knowledge of
small-scale photospheric fields, with particular emphasis on quiet-sun field,
and discuss the implications of several results obtained recently using new
instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
Temporal regularity of the environment drives time perception
It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be varied. In one experiment, we asked whether the last stimulus was regular or not. We found that participants exposed to an irregular environment frequently reported perfectly regularly paced stimuli to be irregular. In a second experiment, we asked participants to judge whether the final stimulus was presented before or after a flash. In this way, we were able to determine distortions in temporal perception as changes in the timing necessary for the sound and the flash to be perceived synchronous. We found that within a regular context, the perceived timing of deviant last stimuli changed so that the relative anisochrony appeared to be perceptually decreased. In the irregular context, the perceived timing of irregular stimuli following a regular sequence was not affected. These observations suggest that humans use temporal expectations to evaluate the regularity of sequences and that expectations are combined with sensory stimuli to adapt perceived timing to follow the statistics of the environment. Expectations can be seen as a-priori probabilities on which perceived timing of stimuli depend
Solar constraints on new couplings between electromagnetism and gravity
The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k:k(2)\u3c (2.5 km)(2)
Circulating angiopoietin-like protein 8 (betatrophin) association with HsCRP and metabolic syndrome
Consumption of dairy foods in relation to impaired glucose metabolism and type 2 diabetes mellitus: the Maastricht Study
ApoE deficiency exacerbates the development and sustainment of a semi-chronic K/BxN serum transfer-induced arthritis model
- …
