10,449 research outputs found

    Characterization of Metastatic Tumor Formation by the Colony Size Distribution

    Full text link
    Knowledge regarding the kinetics of metastatic tumor formation, as related to the growth of the primary tumor, represents a fundamental issue in cancer biology. Using an in vivo mammalian model, we show here that one can obtain useful information from the frequency distribution of the sizes of metastatic colonies in distant organs after serial sectioning and image reconstruction. To explain the experimental findings, we constructed a biophysical model based on the respective growth patterns of the primary tumor and metastases and a stochastic process of metastatic colony formation. Heterogeneous distributions of various biological parameters were considered. We found that the elementary assumption of exponential forms of growth for the primary tumor and metastatic colonies predicts a linear relation on a log-log plot of a metastatic colony size distribution, which was consistent with the experimental results. Furthermore, the slope of the curve signifies the ratio of growth rates of the primary and the metastases. Non-exponential (Gompertzian and logistic) tumor growth patterns were also incorporated into the theory to explain possible deviation from the log-log linear relation. The observed metastasis-free probability also supported the assumption of a time-dependent Poisson process. With this approach, we determined the mechanistic parameters governing the process of metastatogenesis in the lungs for two murine tumor cell lines (KHT and MCaK). Since biological parameters specified in the model could be obtained in the laboratory, a workable metastatic "assay" may be established for various malignancies and in turn contribute in formulating rational treatment regimens for subclinical metastases.Comment: 14 pages, 6 figure

    High Dimensional Apollonian Networks

    Get PDF
    We propose a simple algorithm which produces high dimensional Apollonian networks with both small-world and scale-free characteristics. We derive analytical expressions for the degree distribution, the clustering coefficient and the diameter of the networks, which are determined by their dimension

    Evolving small-world networks with geographical attachment preference

    Full text link
    We introduce a minimal extended evolving model for small-world networks which is controlled by a parameter. In this model the network growth is determined by the attachment of new nodes to already existing nodes that are geographically close. We analyze several topological properties for our model both analytically and by numerical simulations. The resulting network shows some important characteristics of real-life networks such as the small-world effect and a high clustering.Comment: 11 pages, 4 figure

    The South African National Collection of Fungi: celebrating a centenary 1905-2005

    Get PDF
    The international acronym PREM denotes the South African National Collection of Fungi, which houses approximately 60 000 specimens. The collection includes material from outside South Africa and contains representatives of all the major groups of fungi excluding the yeasts and pathogens of larger animals and man. The name PREM was derived from the city in which the collection is situated, Pretoria (PRE), and the M defines the collection as being mycological. The background information and historical facts presented in this paper are based on an unpublished manuscript, prepared by the co-author and then head of the collection A.P. Baxter, for the 90th celebration of PREM

    Tunable Fano effect in parallel-coupled double quantum dot system

    Full text link
    With the help of the Green function technique and the equation of motion approach, the electronic transport through a parallel-coupled double quantum dot(DQD) is theoretically studied. Owing to the inter-dot coupling, the bonding and antibonding states of the artificial quantum-dot-molecule may constitute an appropriate basis set. Based on this picture, the Fano interference in the conductance spectra of the DQD system is readily explained. The possibility of manipulating the Fano lineshape in the tunnelling spectra of the DQD system is explored by tuning the dot-lead coupling, the inter-dot coupling, the magnetic flux threading the ring connecting dots and leads, and the flux difference between two sub-rings. It has been found that by making use of various tuning, the direction of the asymmetric tail of Fano lineshape may be flipped by external fields, and the continuous conductance spectra may be magnetically manipulated with lineshape retained. More importantly, by adjusting the magnetic flux, the function of two molecular states can be exchanged, giving rise to a swap effect, which might play a role as a qubit in the quantum computation.Comment: 9 pages, 10 figure

    Readout and Control of a Power-recycled Interferometric Gravitational-wave Antenna

    Get PDF
    Interferometric gravitational wave antennas are based on Michelson interferometers whose sensitivity to small differential length changes has been enhanced by adding multiple coupled optical resonators. The use of optical cavities is essential for reaching the required sensitivity, but sets challenges for the control system which must maintain the cavities near resonance. The goal for the strain sensitivity of the Laser Interferometer Gravitational-wave Observatory (LIGO) is 10^-21 rms, integrated over a 100 Hz bandwidth centered at 150 Hz. We present the major design features of the LIGO length and frequency sensing and control system which will hold the differential length to within 5 10^-14 m of the operating point. We also highlight the restrictions imposed by couplings of noise into the gravitational wave readout signal and the required immunity against them.Comment: Presentation at ICALEPCS 2001, San Jose, November 2001, (WECT003), 3 page

    Spin Dynamics of a J1-J2-K Model for the Paramagnetic Phase of Iron Pnictides

    Get PDF
    We study the finite-temperature spin dynamics of the paramagnetic phase of iron pnictides within an antiferromagnetic J_1-J_2 Heisenberg model on a square lattice with a biquadratic coupling K(SiSj)2-K (S_i \cdot S_j)^2 between the nearest-neighbor spins. Our focus is on the paramagnetic phase in the parameter regime of this J_1-J_2-K model where the ground state is a (\pi,0) collinear antiferromagnet. We treat the biquadratic interaction via a Hubbard-Stratonovich decomposition, and study the resulting effective quadratic-coupling model using both modified spin wave and Schwinger boson mean-field theories; the results for the spin dynamics derived from the two methods are very similar. We show that the spectral weight of dynamical structure factor S(q,\omega) is peaked at ellipses in the momentum space at low excitation energies. With increasing energy, the elliptic features expand towards the zone boundary, and gradually split into two parts, forming a pattern around (\pi,\pi). Finally, the spectral weight is anisotropic, being larger along the major axis of the ellipse than along its minor axis. These characteristics of the dynamical structure factor are consistent with the recent measurements of the inelastic neutron scattering spectra on BaFe_2As_2 and SrFe_2As_2.Comment: 13 pages, 11 figures, to be published in Phys. Rev.

    Fano Effect through Parallel-coupled Double Coulomb Islands

    Full text link
    By means of the non-equilibrium Green function and equation of motion method, the electronic transport is theoretically studied through a parallel-coupled double quantum dots(DQD) in the presence of the on-dot Coulomb correlation, with an emphasis put on the quantum interference. It has been found that in the Coulomb blockage regime, the quantum interference between the bonding and antiboding DQD states or that between their Coulomb blockade counterparts may result in the Fano resonance in the conductance spectra, and the Fano peak doublet may be observed under certain non-equilibrium condition. The possibility of manipulating the Fano lineshape is predicted by tuning the dot-lead coupling and magnetic flux threading the ring connecting the dots and leads. Similar to the case without Coulomb interaction, the direction of the asymmetric tail of Fano lineshape can be flipped by the external field. Most importantly, by tuning the magnetic flux, the function of four relevant states can be interchanged, giving rise to the swap effect, which might play a key role as a qubit in the quantum computation.Comment: 7 pages, 5 figure

    A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection

    Get PDF
    The purpose of this paper is to apply characteristics of residual stress that causes cantilever beams to bend for manufacturing a micro-structured gas flow sensor. This study uses a silicon wafer deposited silicon nitride layers, reassembled the gas flow sensor with four cantilever beams that perpendicular to each other and manufactured piezoresistive structure on each micro-cantilever by MEMS technologies, respectively. When the cantilever beams are formed after etching the silicon wafer, it bends up a little due to the released residual stress induced in the previous fabrication process. As air flows through the sensor upstream and downstream beam deformation was made, thus the airflow direction can be determined through comparing the resistance variation between different cantilever beams. The flow rate can also be measured by calculating the total resistance variations on the four cantilevers.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838
    corecore