358 research outputs found

    Prior events predict cerebrovascular and coronary outcomes in the PROGRESS trial

    Get PDF
    <p><b>Background and Purpose:</b> The relationship between baseline and recurrent vascular events may be important in the targeting of secondary prevention strategies. We examined the relationship between initial event and various types of further vascular outcomes and associated effects of blood pressure (BP)–lowering.</p> <p><b>Methods:</b> Subsidiary analyses of the Perindopril Protection Against Recurrent Stroke Study (PROGRESS) trial, a randomized, placebo-controlled trial that established the benefits of BP–lowering in 6105 patients (mean age 64 years, 30% female) with cerebrovascular disease, randomly assigned to either active treatment (perindopril for all, plus indapamide in those with neither an indication for, nor a contraindication to, a diuretic) or placebo(s).</p> <p><b>Results:</b> Stroke subtypes and coronary events were associated with 1.5- to 6.6-fold greater risk of recurrence of the same event (hazard ratios, 1.51 to 6.64; P=0.1 for large artery infarction, P<0.0001 for other events). However, 46% to 92% of further vascular outcomes were not of the same type. Active treatment produced comparable reductions in the risk of vascular outcomes among patients with a broad range of vascular events at entry (relative risk reduction, 25%; P<0.0001 for ischemic stroke; 42%, P=0.0006 for hemorrhagic stroke; 17%, P=0.3 for coronary events; P homogeneity=0.4).</p> <p><b>Conclusions:</b> Patients with previous vascular events are at high risk of recurrences of the same event. However, because they are also at risk of other vascular outcomes, a broad range of secondary prevention strategies is necessary for their treatment. BP–lowering is likely to be one of the most effective and generalizable strategies across a variety of major vascular events including stroke and myocardial infarction.</p&gt

    Ultrafast carrier relaxation in GaN, In_(0.05)Ga_(0.95)N and an In_(0.05)Ga_(0.95)/In_(0.15)Ga_(0.85)N Multiple Quantum Well

    Full text link
    Room temperature, wavelength non-degenerate ultrafast pump/probe measurements were performed on GaN and InGaN epilayers and an InGaN multiple quantum well structure. Carrier relaxation dynamics were investigated as a function of excitation wavelength and intensity. Spectrally-resolved sub-picosecond relaxation due to carrier redistribution and QW capture was found to depend sensitively on the wavelength of pump excitation. Moreover, for pump intensities above a threshold of 100 microJ/cm2, all samples demonstrated an additional emission feature arising from stimulated emission (SE). SE is evidenced as accelerated relaxation (< 10 ps) in the pump-probe data, fundamentally altering the re-distribution of carriers. Once SE and carrier redistribution is completed, a slower relaxation of up to 1 ns for GaN and InGaN epilayers, and 660 ps for the MQW sample, indicates carrier recombination through spontaneous emission.Comment: submitted to Phys. Rev.

    Effect Of Planting Device And Seed Sorting On Yield Of Maize

    Get PDF
    ABSTRACT: Experiments were conducted at the CSIR-Crops Research Experimental station at Kumasi, Ghana, to determine the effects of seed sorting and planting device on yield of maize in the 2014 major growing season. Two jab planters were used to plant sorted and unsorted seeds. The control treatment was cutlass planting of unsorted seed. One of the jab planters was imported from China; and the other was fabricated in Ghana. The experimental design was a randomized complete block with 3 replications. Planting one hectare of maize with the Chinese planter took about 10 hours, 36 minutes; the local planter took 12 hours 39 minutes, whilst cutlass took 29 hours 36 minutes. Seed sorting and planting device had no significant effect on maize yield. However it was faster, cheaper and economically more viable to plant with jab planter than with cutlass

    Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats : correlation with histopathology

    Get PDF
    BACKGROUND AND PURPOSE: The early ischemic lesions demonstrated by diffusion-weighted imaging (DWI) are potentially reversible. The purposes of this study were to determine whether resolution of initial DWI lesions is transient or permanent after different brief periods of focal brain ischemia and to evaluate histological outcomes. METHODS: Sixteen rats were subjected to 10 minutes (n=7) or 30 minutes (n=7) of temporary middle cerebral artery occlusion or sham operation (n=2). DWI, perfusion-weighted imaging (PWI), and T(2)-weighted imaging (T(2)WI) were performed during occlusion; immediately after reperfusion; and at 0.5, 1.0, 1.5, 12, 24, 48, and 72 hours after reperfusion. After the last MRI study, the brains were fixed, sectioned, stained with hematoxylin and eosin, and evaluated for neuronal necrosis. RESULTS: No MRI or histological abnormalities were observed in the sham-operated rats. In both the 10-minute and 30-minute groups, the perfusion deficits and DWI hyperintensities that occurred during occlusion disappeared shortly after reperfusion. The DWI, PWI, and T(2)WI results remained normal thereafter in the 10-minute group, whereas secondary DWI hyperintensity and T(2)WI abnormalities developed at the 12-hour observation point in the 30-minute group. Histological examinations demonstrated neuronal necrosis in both groups, but the number of necrotic neurons was significantly higher in the 30-minute group (95+/-4%) than in the 10-minute group (17+/-10%, P\u3c0.0001). CONCLUSIONS: Transient or permanent resolution of initial DWI lesions depends on the duration of ischemia. Transient resolution of DWI lesions is associated with widespread neuronal necrosis; moreover, permanent resolution of DWI lesions does not necessarily indicate complete salvage of brain tissue from ischemic injury

    Rothamsted carbon model reveals technical options to maintain soil organic carbon under semi-arid climate

    Get PDF
    Soil organic matter in the Sahel is severely reduced by continuous cultivation. Reductions of soil organic matter decrease in turn soil productivity. Nonetheless, reports show that organic matter application in the Sahel improves crop yield. However, long-term effects of organic matter application on soil fertility have not been fully studied. In particular, it is essential to get information on organic matter decomposition and annual carbon requirement. Model simulation is suitable for evaluating long-term sustainability. The Rothamsted carbon model is convenient and has been recently validated for use in Sahelian conditions. Here, we studied the annual carbon requirement for sustainable soil organic carbon management in the Sahelian zone using datasets of short-term trials conducted in the Sahel. We estimated the long-term effect of various agricultural managements on soil organic carbon dynamics as one of the soil fertility indices. The 10-year soil organic carbon value changes were predicted by the Rothamsted carbon model for 59 treatments. Results show that, contrary to previous short-term experiments that indicated crop yield enhancement, these technical options also cause a decline in soil organic carbon if enough organic resource is not applied. Soil productivity should therefore decrease. The annual carbon requirement to maintain the soil organic carbon level is approximately 0.8 tons of carbon per hectar

    Validation of soil organic carbon dynamics model in the semi-arid tropics in Niger, West Africa

    Get PDF
    The fertility of sandy soils in the Sahelian zone (SZ) is extremely low. This poor soil fertility is one of the limiting factors of crop production in the SZ. Therefore, it is imperative to improve or to maintain soil fertility through various agricultural management methods. Further, it is well known that soil organic matter plays an important role in improving the physicochemical properties of these sandy infertile soils. Therefore, it is essential to develop a suitable tool for the appropriate evaluation of soil organic carbon (SOC) dynamics in the SZ. Therefore, the Rothamsted carbon model (Roth-C) was verified in 32 treatments of two long-term field experiments with and without crop residue application. These experiments were performed by ICRISAT. The performance of the model was evaluated by statistical methods using four indices (RMSE: root mean square error, LOFIT: lack of fit, r: correlation coefficient, and M: mean difference). As a result, the predicted SOC values in the casewithout crop residue management decreased with time in approximately 10 cultivated years. In contrast, in the case with crop residue application, the predicted SOC remained roughly equal to the initial SOC value during the term observed. Mostly, the Roth-C-modelled values agreed well with the actual value. RMSE and LOFIT, the statistical indicators of agreement between predicted and observed values, showed a significant conformity between the predicted and observed SOC values in all the 32 treatments. This fact means that Roth-C can estimate long-term SOC dynamics of several technical options that developed with short-term trials. Moreover the annual carbon requirement for SOC maintaining can be calculate if enough number of cases was estimated. And also analysis of regional carbon dynamics was made possible with using Roth-C model. It will contribute to show the sustainable development in SZ against global warming and other climatic changes

    Temperature dependent CO2 behavior in microporous 1-D channels of a metal-organic framework with multiple interaction sites

    Get PDF
    The MOF with the encapsulated CO2 molecule shows that the CO2 molecule is ligated to the unsaturated Cu(II) sites in the cage using its Lewis basic oxygen atom via an angular eta(1)-(O-A) coordination mode and also interacts with Lewis basic nitrogen atoms of the tetrazole ligands using its Lewis acidic carbon atom. Temperature dependent structure analyses indicate the simultaneous weakening of both interactions as temperature increases. Infrared spectroscopy of the MOF confirmed that the CO2 interaction with the framework is temperature dependent. The strength of the interaction is correlated to the separation of the two bending peaks of the bound CO2 rather than the frequency shift of the asymmetric stretching peak from that of free CO2. The encapsulated CO2 in the cage is weakly interacting with the framework at around ambient temperatures and can have proper orientation for wiggling out of the cage through the narrow portals so that the reversible uptake can take place. On the other hand, the CO2 in the cage is restrained at a specific orientation at 195 K since it interacts with the framework strong enough using the multiple interaction sites so that adsorption process is slightly restricted and desorption process is almost clogged.ope

    How can humans understand their automated cars? HMI principles, problems and solutions

    Get PDF
    As long as vehicles do not provide full automation, the design and function of the Human Machine Interface (HMI) is crucial for ensuring that the human “driver” and the vehicle-based automated systems collaborate in a safe manner. When the driver is decoupled from active control, the design of the HMI becomes even more critical. Without mutual understanding, the two agents (human and vehicle) will fail to accurately comprehend each other’s intentions and actions. This paper proposes a set of design principles for in-vehicle HMI and reviews some current HMI designs in the light of those principles. We argue that in many respects, the current designs fall short of best practice and have the potential to confuse the driver. This can lead to a mismatch between the operation of the automation in the light of the current external situation and the driver’s awareness of how well the automation is currently handling that situation. A model to illustrate how the various principles are interrelated is proposed. Finally, recommendations are made on how, building on each principle, HMI design solutions can be adopted to address these challenges

    Defining motility in the Staphylococci

    Get PDF
    The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions
    • 

    corecore