39 research outputs found

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Development of autologous cytotoxic CD4+ T clones in a human model of B-cell non-Hodgkin follicular lymphoma.

    No full text
    Immunotherapy for cancer aims to generate cytotoxic cells that are capable of eradicating tumour cells. It has been well demonstrated that helper, non-cytotoxic CD4(+) T cells are important for the induction and maintenance of anti-tumour immunity exerted by cytotoxic CD8(+) T cells. In contrast, the existence of direct anti-tumour, effector cytotoxic CD4(+) T cells remains elusive, mainly due to the paucity of reliable experimental data, especially in human B-cell non-Hodgkin lymphomas. This study developed an appropriate, autologous follicular B-cell non-Hodgkin follicular lymphoma model, including the in vitro establishment of a malignant, human leucocyte antigen class I (HLA-I) deficient B-cell line, and the generation of three autologous anti-tumour cytotoxic CD4(+) T-cell clones originating from the peripheral blood of the same patient. These three clones were considered as tumour specific, because they were capable of killing the malignant, HLA-I-deficient B-cell line through a classical HLA-II restricted perforin-mediated pathway, but did not lyse the Epstein-Barr virus-infected autologous normal B lymphocytes. All three CD4(+)clones were T-cell receptor Vbeta17-Dbeta1-Jbeta1.2 and exhibited an identical complementarity-determining region 3, suggesting the immunodominance of a single peptide antigen presented by tumour cells. Such lymphoma models would provide a useful tool for in vivo expansion and the adoptive transfer of selected CD4(+) cytotoxic cells in immunotherapeutic strategies
    corecore