456 research outputs found

    The Consumer's Coal Problem

    Get PDF

    Mine Illumination

    Get PDF

    Using P-band Signals of Opportunity Radio Waves for Root Zone Soil Moisture Remote Sensing

    Get PDF
    Retrieval of Root Zone Soil Moisture (RZSM) is important for understanding the carbon cycle for use in climate change research as well as meteorology, hydrology, and precision agriculture studies. A current method of remote sensing, GNSS-R uses GPS signals to measure soil moisture content and vegetation biomass, but it is limited to 3-5 cm of soil penetration depth. Signals of Opportunity (SoOp) has emerged as an extension of GNSS-R remote sensing using communication signals. P-band communication signals (370 MHz) will be studied as an improved method of remote sensing of RZSM. P-band offers numerous advantages over GNSS-R, including stronger signal strength and deeper soil penetration. A SoOp instrument was installed on a mobile antenna tower in a farm field at Purdue University in West Lafayette, IN. An additional half-wave dipole antenna, as well as corresponding modifications to the experiment’s front-end box, was included to capture horizontally-polarized reflected P-band signals throughout a corn growth season. By measuring the reflected signal power off the soil over time, soil moisture and above-ground biomass can be measured. Soil moisture and vegetation biomass change the soil’s dielectric reflection coefficient and thus affect its reflectivity properties. It is expected that there will be strong correlation between reflected signal strength and soil moisture. Data will be compared against soil moisture measurements from in-situ soil sensors. The data obtained will be used to verify existing analytical soil moisture and above-ground biomass models. In addition, these results will be used to build an airborne and/or space-based remote sensing instrument

    Die Beschichtung von UOâ‚‚-Pellets mit Niob-Metall

    Get PDF

    Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes

    Full text link
    The reliability of Langmuir probe measurements for plasma-turbulence investigations is studied on GEMR gyro-fluid simulations and compared with results from conditionally sampled I-V characteristics as well as self-emitting probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade. In this region, simulation and experiment consistently show coherent in-phase fluctuations in density, plasma potential and also in electron temperature. Ion-saturation current measurements turn out to reproduce density fluctuations quite well. Fluctuations in the floating potential, however, are strongly influenced by temperature fluctuations and, hence, are strongly distorted compared to the actual plasma potential. These results suggest that interpreting floating as plasma-potential fluctuations while disregarding temperature effects is not justified near the separatrix of hot fusion plasmas. Here, floating potential measurements lead to corrupted results on the ExB dynamics of turbulent structures in the context of, e.g., turbulent particle and momentum transport or instability identification on the basis of density-potential phase relations

    Reentrant superconductivity in superconductor/ferromagnetic-alloy bilayers

    Full text link
    We studied the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state establishing due to the proximity effect in superconducting Nb/Cu41Ni59 bilayers. Using a special wedge-type deposition technique, series of 20-35 samples could be fabricated by magnetron sputtering during one run. The layer thickness of only a few nanometers, the composition of the alloy, and the quality of interfaces were controlled by Rutherford backscattering spectrometry, high resolution transmission electron microscopy, and Auger spectroscopy. The magnetic properties of the ferromagnetic alloy layer were characterized with superconducting quantum interference device (SQUID) magnetometry. These studies yield precise information about the thickness, and demonstrate the homogeneity of the alloy composition and magnetic properties along the sample series. The dependencies of the critical temperature on the Nb and Cu41Ni59 layer thickness, Tc(dS) and Tc(dF), were investigated for constant thickness dF of the magnetic alloy layer and dS of the superconducting layer, respectively. All types of non-monotonic behaviors of Tc versus dF predicted by the theory could be realized experimentally: from reentrant superconducting behavior with a broad extinction region to a slight suppression of superconductivity with a shallow minimum. Even a double extinction of superconductivity was observed, giving evidence for the multiple reentrant behavior predicted by theory. All critical temperature curves were fitted with suitable sets of parameters. Then, Tc(dF) diagrams of a hypothetical F/S/F spin-switch core structure were calculated using these parameters. Finally, superconducting spin-switch fabrication issues are discussed in detail in view of the achieved results.Comment: 34 pages, 9 figure
    • …
    corecore