139 research outputs found
Screening of human gene promoter activities using transfected-cell arrays
Promoters are the best characterized transcriptional regulatory sequences in complex genomes because of their predictable location immediately upstream of transcription start sites. Despite a substantial body of literature describing transcriptional promoters, the identification of true start sites for all human transcripts is far from complete. The same is true of the key structural and functional elements responsible for promoter action in different cell types. In order to identify elements responsible for promoter activity, we applied transfected-cell array technology to functionally evaluate promoters for genes involved in inflammatory bowel disease. Seventy-four promoters were examined by reverse transfection of a promoter-fluorescent reporter constructs into a human embryonic kidney cell line (HEK293T). Sixteen (21.6%) promoters were found to be active in HEK293 T cells. Correlations between promoter activity and endogenous transcript level were calculated, and 75% of active promoters were found to be associated with transcriptional activity of their gene counterparts. These results provide experimental evidence of promoter activity, which may aid in understanding the regulation of gene expression. Moreover, this is the first large-scale functional study of regulatory sequences to use a high-throughput transfected-cell array technique
Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains
miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes.|We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA's expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling.|The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this approach for discovery of new functional roles and downstream processes regulated by miRNA
Ethical issues relating to the banking of umbilical cord blood in Mexico
<p>Abstract</p> <p>Background</p> <p>Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico.</p> <p>Discussion</p> <p>A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord.</p> <p>Summary</p> <p>Conflicts between moral principles and economic interests (non-moral principles) cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks' performance.</p
Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function
Micro-RNAs (miRNAs) are short, single-stranded, noncoding RNAs that are involved in the regulation of protein-coding genes at the level of messenger RNA (mRNA). They are involved in the regulation of numerous traits, including developmental timing, apoptosis, immune function, and neuronal development. To better understand how the expression of the miRNAs themselves is regulated, we looked for miRNA expression differences among four mouse inbred strains, A/J, BALB/cJ, C57BL/6J, and DBA/2J, in one tissue, the hippocampus. A total of 166 miRNA RT-PCR assays were used to screen RNA pools for each strain. Twenty miRNA species that were markedly different between strains were further investigated using eight individual samples per strain, and 11 miRNAs showed significant differences across strains (p < 0.05). This is the first observation of miRNA expression differences across inbred mice strains. We conducted an in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression to better characterise the effects of these miRNAs on both phenotype and the regulation of mRNA expression. This approach has allowed us to nominate miRNAs that have potential roles in anxiety, exploration, and learning and memory
Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag
HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes
Chip-Technologie als Werkzeug in der Systembiologie
Das Genom, die Umwelt und einige zufällige Ereignisse sind die drei Hauptkomponenten, die den Phänotyp eines Organismus bestimmen. In diesem Sinne kann in der Biologie Leben als eine Art Rechenprozess betrachtet werden, der es erlaubt, Lebensvorgänge am Computer zu simulieren. Hierzu ist es notwendig, die komplexen Netzwerke von Interaktionen unter Einbeziehung aller Gene und deren Produkte jedes Organismus nachzubilden. Alle experimentell gewonnen Daten, die biologische Systeme beschreiben können, müssen intelligent integriert, verknüpft und analysiert werden. Diese quantitative Simulation von biologischen Prozessen stellt das Aufgabengebiet der Systembiologie dar. Alle Bereiche der funktionellen Genomforschung, von der Erforschung der Evolution der Gene über die Aufklärung des Proteoms, des Metaboloms, der Strukturaufklärung und der Nachbargebiete, fließen hier zusammen. Nur durch die Verknüpfung dieser unterschiedlichen Bereiche in der funktionellen Genomforschung wird es möglich sein, die biologischen Prozesse wirklich zu verstehen um z.B. Krankheiten in ihren Ursachen zu bekämpfen oder für individuelle Patienten maßgeschneiderte Medikamente bereitstellen zu können
- …