115 research outputs found

    Evaluation of a new paediatric dentistry intravenous sedation service

    Get PDF
    Introduction: Intravenous sedation (IVS) with propofol offers an alternative to inhalation sedation or general anaesthesia (GA) for dentally anxious young people who require treatment. It offers a greater level of anxiolysis than inhalation sedation and reduced morbidity when compared with GA. Methods: Data were collected prospectively from a convenience sample of children requiring IVS. Participants completed the Children's Experiences of Dental Anxiety Measure (CEDAM) at the start of every visit. Patient demographics, treatment completed, surgery and recovery time were recorded. Feedback was obtained following their first visit. Results: Treatment was successful for 91.5% (43/47) of patients. The average surgery and discharge time was 32.9 (8-105 minutes) and 33.1 (5-84 minutes), respectively. The CEDAM scores were between 14 and 30 (mean score 20.8). Thematic content analysis of the feedback was carried out and themes relating to communication, environment, appointment times, service satisfaction and advice to other patients emerged. Discussion: CEDAM scores may have been lower than expected due to under-reporting by patients or clinicians' perception of higher anxiety levels. Feedback was reviewed regularly and improvements made where possible. Conclusion: The majority of patients successfully received dental treatment under IVS. Changes have been made to the service to improve patient experience and maximise productivity

    CuInSe2 thin films produced by rf sputtering in Ar/H2 atmospheres

    Get PDF
    Structural, compositional, optical, and electrical properties of CuInSe2thin filmsgrown by rf reactive sputtering from a Se excess target in Ar/H2 atmospheres are presented. The addition of H2 to the sputtering atmospheres allows the control of stoichiometry of films giving rise to remarkable changes in the film properties. Variation of substrate temperature causes changes in film composition because of the variation of hydrogen reactivity at the substrate. Measurements of resistivity at variable temperatures indicate a hopping conduction mechanism through gap states for films grown at low temperature (100–250 °C), the existence of three acceptor levels at about 0.046, 0.098, and 0.144 eV above valence band for films grown at intermediate temperature (250–350 °C), and a pseudometallic behavior for film grown at high temperatures (350–450 °C). Chalcopyrite polycrystalline thin films of CuInSe2 with an average grain size of 1 ÎŒm, an optical gap of 1.01 eV, and resistivities from 10− 1 to 103 Ω cm can be obtained by adding 1.5% of H2 to the sputtering atmosphere and by varying the substrate temperature from 300 to 400 °C

    In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain

    Get PDF
    © 2014 American Chemical Society. Rapid advances in imaging technologies have pushed novel spectroscopic modalities such as Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the forefront of direct in situ investigation of brain biochemistry. However, few studies have examined the extent to which sample preparation artifacts confound results. Previous investigations using traditional analyses, such as tissue dissection, homogenization, and biochemical assay, conducted extensive research to identify biochemical alterations that occur ex vivo during sample preparation. In particular, altered metabolism and oxidative stress may be caused by animal death. These processes were a concern for studies using biochemical assays, and protocols were developed to minimize their occurrence. In this investigation, a similar approach was taken to identify the biochemical alterations that are detectable by two in situ spectroscopic methods (FTIR, XAS) that occur as a consequence of ischemic conditions created during humane animal killing. FTIR and XAS are well suited to study markers of altered metabolism such as lactate and creatine (FTIR) and markers of oxidative stress such as aggregated proteins (FTIR) and altered thiol redox (XAS). The results are in accordance with previous investigations using biochemical assays and demonstrate that the time between animal death and tissue dissection results in ischemic conditions that alter brain metabolism and initiate oxidative stress. Therefore, future in situ biospectroscopic investigations utilizing FTIR and XAS must take into consideration that brain tissue dissected from a healthy animal does not truly reflect the in vivo condition, but rather reflects a state of mild ischemia. If studies require the levels of metabolites (lactate, creatine) and markers of oxidative stress (thiol redox) to be preserved as close as possible to the in vivo condition, then rapid freezing of brain tissue via decapitation into liquid nitrogen, followed by chiseling the brain out at dry ice temperatures is required

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF

    Nachweis intra- und intermolekularer elektronischer Anregungen im quasi-eindimensionalen organischen Leiter (MTPA)x(TCNQ) durch Messung der Dispersion der Absorptions- und Polarisierbarkeitstensoren

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Interactions Between Two-Tone Complexes and Masking Noise

    No full text

    Ueber quantitative Bestimmung des Glykogens

    No full text

    Zur Entstehung des statischen Plattfusses

    No full text

    Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury

    No full text
    Ying An,1,2 Natalya Belevych,1,2 Yufen Wang,1,2 Hao Zhang,1 Jason S Nasse,3 Harvey Herschman,4 Qun Chen,1,2 Andrew Tarr,1,2 Xiaoyu Liu,1,2 Ning Quan1,21Institute for Behavior Medicine Research, 2Department of Oral Biology, College of Dentistry, 3Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; 4Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USAAbstract: In a previous study, we found that intracerebral administration of excitotoxin (RS)-(tetrazole-5yl) glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2flox/flox). In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2) in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.Keywords: neural injury, prostaglandins, neutrophil, conditional COX-2 deletion, PGI

    Der Kreislauf des Schwefels in der organischen Natur

    No full text
    • 

    corecore