54,281 research outputs found

    Vision-based toddler tracking at home

    Get PDF
    This paper presents a vision-based toddler tracking system for detecting risk factors of a toddler's fall within the home environment. The risk factors have environmental and behavioral aspects and the research in this paper focuses on the behavioral aspects. Apart from common image processing tasks such as background subtraction, the vision-based toddler tracking involves human classification, acquisition of motion and position information, and handling of regional merges and splits. The human classification is based on dynamic motion vectors of the human body. The center of mass of each contour is detected and connected with the closest center of mass in the next frame to obtain position, speed, and directional information. This tracking system is further enhanced by dealing with regional merges and splits due to multiple object occlusions. In order to identify the merges and splits, two directional detections of closest region centers are conducted between every two successive frames. Merges and splits of a single object due to errors in the background subtraction are also handled. The tracking algorithms have been developed, implemented and tested

    A smart vision sensor for detecting risk factors of a toddler's fall in a home environment

    Get PDF
    This paper presents a smart vision sensor for detecting risk factors of a toddler's fall in an indoor home environment assisting parents' supervision to prevent fall injuries. We identified the risk factors by analyzing real fall injury stories and referring to a related organization's suggestions to prevent falls. In order to detect the risk factors using computer vision, two major image processing methods, clutter detection and toddler tracking, were studied with using only one commercial web-camera. For practical purposes, there is no need for a toddler to wear any sensors or markers. The algorithms for detection have been developed, implemented and tested

    DK,lνD \rightarrow K, l \nu Semileptonic Decay Scalar Form Factor and Vcs|V_{cs}| from Lattice QCD

    Full text link
    We present a new study of D semileptonic decays on the lattice which employs the Highly Improved Staggered Quark (HISQ) action for both the charm and the light valence quarks. We work with MILC unquenched Nf=2+1N_f = 2 + 1 lattices and determine the scalar form factor f0(q2)f_0(q^2) for DK,lνD \rightarrow K, l \nu semileptonic decays. The form factor is obtained from a scalar current matrix element that does not require any operator matching. We develop a new approach to carrying out chiral/continuum extrapolations of f0(q2)f_0(q^2). The method uses the kinematic "zz" variable instead of q2q^2 or the kaon energy EKE_K and is applicable over the entire physical q2q^2 range. We find f0DK(0)f+DK(0)=0.747(19)f^{D \rightarrow K}_0(0) \equiv f^{D \rightarrow K}_+(0) = 0.747(19) in the chiral plus continuum limit and hereby improve the theory error on this quantity by a factor of \sim4 compared to previous lattice determinations. Combining the new theory result with recent experimental measurements of the product f+DK(0)Vcsf^{D \rightarrow K}_+(0) * |V_{cs}| from BaBar and CLEO-c leads to the most precise direct determination of the CKM matrix element Vcs|V_{cs}| to date, Vcs=0.961(11)(24)|V_{cs}| = 0.961(11)(24), where the first error comes from experiment and the second is the lattice QCD theory error. We calculate the ratio f+DK(0)/fDsf^{D \rightarrow K}_+(0)/f_{D_s} and find 2.986±0.0872.986 \pm 0.087 GeV1^{-1} and show that this agrees with experiment.Comment: 23 pages, 31 figures, 11 tables. Added a paragraph in sction VII, and updated with PDG 2010 instead of PDG 200

    Meson and Baryon dispersion relations with Brillouin fermions

    Get PDF
    We study the dispersion relations of mesons and baryons built from Brillouin quarks on one N_f=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cut-off effects. As an application we determine the masses of the \Omega_c^0, \Omega_{cc}^+ and \Omega_{ccc}^{++} baryons on that ensemble.Comment: 16 pages, 9 figures, 4 tables; v2: one Reference added, matches published versio

    Automatic and ironic behavior are both mediated by changes in the self-concept

    Get PDF
    Recent accounts suggest that prime-to-behavior effects are mediated by changes to the active self-concept. Likewise, recent reports of post-suppression behavioral rebound have attributed changes to behavior to changes in the self-concept. According to such accounts, whenever an activated trait or stereotype can be easily incorporated into the active self, behavioral assimilation (i.e., behavior consistent with the activated concept) is likely to ensue. Yet, little evidence has emerged to directly support the mediating role of changes to the self-concept. The present research was designed to examine whether changes to the active self-concept are responsible for changes in behavior following stereotype suppression and priming. Participants who suppressed or were primed with stereotypes of the elderly were more likely to endorse stereotypic traits as self-descriptive and to behave in stereotypic ways. Critically, the former effect significantly mediated the latter. Implications for theories of concept activation and behavior are discussed. (C) 2011 Elsevier Inc. All rights reserved

    Exact Convex Relaxation of Optimal Power Flow in Tree Networks

    Get PDF
    The optimal power flow (OPF) problem seeks to control power generation/demand to optimize certain objectives such as minimizing the generation cost or power loss in the network. It is becoming increasingly important for distribution networks, which are tree networks, due to the emergence of distributed generation and controllable loads. In this paper, we study the OPF problem in tree networks. The OPF problem is nonconvex. We prove that after a "small" modification to the OPF problem, its global optimum can be recovered via a second-order cone programming (SOCP) relaxation, under a "mild" condition that can be checked apriori. Empirical studies justify that the modification to OPF is "small" and that the "mild" condition holds for the IEEE 13-bus distribution network and two real-world networks with high penetration of distributed generation.Comment: 22 pages, 7 figure
    corecore