56 research outputs found
Approach to equilibrium for the phonon Boltzmann equation
We study the asymptotics of solutions of the Boltzmann equation describing
the kinetic limit of a lattice of classical interacting anharmonic oscillators.
We prove that, if the initial condition is a small perturbation of an
equilibrium state, and vanishes at infinity, the dynamics tends diffusively to
equilibrium. The solution is the sum of a local equilibrium state, associated
to conserved quantities that diffuse to zero, and fast variables that are
slaved to the slow ones. This slaving implies the Fourier law, which relates
the induced currents to the gradients of the conserved quantities.Comment: 23 page
Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior
We consider the spatially homogeneous Boltzmann equation for inelastic hard
spheres, in the framework of so-called constant normal restitution
coefficients. We prove the existence of self-similar solutions, and we give
pointwise estimates on their tail. We also give general estimates on the tail
and the regularity of generic solutions. In particular we prove Haff 's law on
the rate of decay of temperature, as well as the algebraic decay of
singularities. The proofs are based on the regularity study of a rescaled
problem, with the help of the regularity properties of the gain part of the
Boltzmann collision integral, well-known in the elastic case, and which are
extended here in the context of granular gases.Comment: 41 page
Quantitative lower bounds for the full Boltzmann equation, Part I: Periodic boundary conditions
We prove the appearance of an explicit lower bound on the solution to the
full Boltzmann equation in the torus for a broad family of collision kernels
including in particular long-range interaction models, under the assumption of
some uniform bounds on some hydrodynamic quantities. This lower bound is
independent of time and space. When the collision kernel satisfies Grad's
cutoff assumption, the lower bound is a global Maxwellian and its asymptotic
behavior in velocity is optimal, whereas for non-cutoff collision kernels the
lower bound we obtain decreases exponentially but faster than the Maxwellian.
Our results cover solutions constructed in a spatially homogeneous setting, as
well as small-time or close-to-equilibrium solutions to the full Boltzmann
equation in the torus. The constants are explicit and depend on the a priori
bounds on the solution.Comment: 37 page
Celebrating Cercignani's conjecture for the Boltzmann equation
Cercignani's conjecture assumes a linear inequality between the entropy and
entropy production functionals for Boltzmann's nonlinear integral operator in
rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities
and spectral gap inequalities, this issue has been at the core of the renewal
of the mathematical theory of convergence to thermodynamical equilibrium for
rarefied gases over the past decade. In this review paper, we survey the
various positive and negative results which were obtained since the conjecture
was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani,
powerful mind and great scientist, one of the founders of the modern theory
of the Boltzmann equation. 24 pages. V2: correction of some typos and one
ref. adde
From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with polynomial weight
We study the Boltzmann equation on the d-dimensional torus in a perturbative setting around a global equilibrium under the Navier-Stokes lineari- sation. We use a recent functional analysis breakthrough to prove that the linear part of the equation generates a C0-semigroup with exponential decay in Lebesgue and Sobolev spaces with polynomial weight, independently on the Knudsen number. Finally we show a Cauchy theory and an exponential decay for the perturbed Boltzmann equation, uniformly in the Knudsen number, in Sobolev spaces with polynomial weight. The polynomial weight is almost optimal and furthermore, this result only requires derivatives in the space variable and allows to connect to solutions to the incompressible Navier-Stokes equations in these spaces
Algebraic damping in the one-dimensional Vlasov equation
We investigate the asymptotic behavior of a perturbation around a spatially
non homogeneous stable stationary state of a one-dimensional Vlasov equation.
Under general hypotheses, after transient exponential Landau damping, a
perturbation evolving according to the linearized Vlasov equation decays
algebraically with the exponent -2 and a well defined frequency. The
theoretical results are successfully tested against numerical -body
simulations, corresponding to the full Vlasov dynamics in the large limit,
in the case of the Hamiltonian mean-field model. For this purpose, we use a
weighted particles code, which allows us to reduce finite size fluctuations and
to observe the asymptotic decay in the -body simulations.Comment: 26 pages, 8 figures; text slightly modified, references added, typos
correcte
Invariant measures of the 2D Euler and Vlasov equations
We discuss invariant measures of partial differential equations such as the
2D Euler or Vlasov equations. For the 2D Euler equations, starting from the
Liouville theorem, valid for N-dimensional approximations of the dynamics, we
define the microcanonical measure as a limit measure where N goes to infinity.
When only the energy and enstrophy invariants are taken into account, we give
an explicit computation to prove the following result: the microcanonical
measure is actually a Young measure corresponding to the maximization of a
mean-field entropy. We explain why this result remains true for more general
microcanonical measures, when all the dynamical invariants are taken into
account. We give an explicit proof that these microcanonical measures are
invariant measures for the dynamics of the 2D Euler equations. We describe a
more general set of invariant measures, and discuss briefly their stability and
their consequence for the ergodicity of the 2D Euler equations. The extension
of these results to the Vlasov equations is also discussed, together with a
proof of the uniqueness of statistical equilibria, for Vlasov equations with
repulsive convex potentials. Even if we consider, in this paper, invariant
measures only for Hamiltonian equations, with no fluxes of conserved
quantities, we think this work is an important step towards the description of
non-equilibrium invariant measures with fluxes.Comment: 40 page
Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains
The formation and propagation of singularities for Boltzmann equation in
bounded domains has been an important question in numerical studies as well as
in theoretical studies. Consider the nonlinear Boltzmann solution near
Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We
demonstrate that discontinuity is created at the non-convex part of the grazing
boundary, then propagates only along the forward characteristics inside the
domain before it hits on the boundary again.Comment: 39 pages, 5 Figure
Global existence and full regularity of the Boltzmann equation without angular cutoff
We prove the global existence and uniqueness of classical solutions around an
equilibrium to the Boltzmann equation without angular cutoff in some Sobolev
spaces. In addition, the solutions thus obtained are shown to be non-negative
and in all variables for any positive time. In this paper, we study
the Maxwellian molecule type collision operator with mild singularity. One of
the key observations is the introduction of a new important norm related to the
singular behavior of the cross section in the collision operator. This norm
captures the essential properties of the singularity and yields precisely the
dissipation of the linearized collision operator through the celebrated
H-theorem
On Landau damping
Going beyond the linearized study has been a longstanding problem in the
theory of Landau damping. In this paper we establish exponential Landau damping
in analytic regularity. The damping phenomenon is reinterpreted in terms of
transfer of regularity between kinetic and spatial variables, rather than
exchanges of energy; phase mixing is the driving mechanism. The analysis
involves new families of analytic norms, measuring regularity by comparison
with solutions of the free transport equation; new functional inequalities; a
control of nonlinear echoes; sharp scattering estimates; and a Newton
approximation scheme. Our results hold for any potential no more singular than
Coulomb or Newton interaction; the limit cases are included with specific
technical effort. As a side result, the stability of homogeneous equilibria of
the nonlinear Vlasov equation is established under sharp assumptions. We point
out the strong analogy with the KAM theory, and discuss physical implications.Comment: News: (1) the main result now covers Coulomb and Newton potentials,
and (2) some classes of Gevrey data; (3) as a corollary this implies new
results of stability of homogeneous nonmonotone equilibria for the
gravitational Vlasov-Poisson equatio
- âŠ