39 research outputs found

    Clonality of circulating tumor cells in breast cancer brain metastasis patients

    Get PDF
    BACKGROUND: The incidence of brain metastases in breast cancer (BCBM) patients is increasing. These patients have a very poor prognosis, and therefore, identification of blood-based biomarkers, such as circulating tumor cells (CTCs), and understanding the genomic heterogeneity could help to personalize treatment options. METHODS: Both EpCAM-dependent (CellSearch® System) and EpCAM-independent Ficoll-based density centrifugation methods were used to detect CTCs from 57 BCBM patients. DNA from individual CTCs and corresponding primary tumors and brain metastases were analyzed by next-generation sequencing (NGS) in order to evaluate copy number aberrations and single nucleotide variations (SNVs). RESULTS: CTCs were detected after EpCAM-dependent enrichment in 47.7% of the patients (≥ 5 CTCs/7.5 ml blood in 20.5%). The CTC count was associated with ERBB2 status (p = 0.029) of the primary tumor as well as with the prevalence of bone metastases (p = 0.021). EpCAM-independent enrichment revealed CTCs in 32.6% of the patients, especially among triple-negative breast cancer (TNBC) patients (70.0%). A positive CTC status after enrichment of either method was significantly associated with decreased overall survival time (p < 0.05). Combining the results of both enrichment methods, 63.6% of the patients were classified as CTC positive. In three patients, the matched tumor tissue and single CTCs were analyzed by NGS showing chromosomal aberrations with a high genomic clonality and mutations in pathways potentially important in brain metastasis formation. CONCLUSION: The detection of CTCs, regardless of the enrichment method, is of prognostic relevance in BCBM patients and in combination with molecular analysis of CTCs can help defining patients with higher risk of early relapse and suitability for targeted treatment

    What they fill in today, may not be useful tomorrow: Lessons learned from studying Medical Records at the Women hospital in Tabriz, Iran

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The medical record is used to document patient's medical history, illnesses and treatment procedures. The information inside is useful when all needed information is documented properly. Medical care providers in Iran have complained of low quality of Medical Records. This study was designed to evaluate the quality of the Medical Records at the university hospital in Tabriz, Iran.</p> <p>Methods</p> <p>In order to get a background of the quality of documentation, 300 Medical Records were randomly selected among all hospitalized patient during September 23, 2003 and September 22, 2004. Documentation of all records was evaluated using checklists. Then, in order to combine objective data with subjective, 10 physicians and 10 nurses who were involved in documentation of Medical Records were randomly selected and interviewed using two semi structured guidelines.</p> <p>Results</p> <p>Almost all 300 Medical Records had problems in terms of quality of documentation. There was no record in which all information was documented correctly and compatible with the official format in Medical Records provided by Ministry of Health and Medical Education. Interviewees believed that poor handwriting, missing of sheets and imperfect documentation are major problems of the Paper-based Medical Records, and the main reason was believed to be high workload of both physicians and nurses.</p> <p>Conclusion</p> <p>The Medical Records are expected to be complete and accurate. Our study has unveiled that the Medical Records are not documented properly in the university hospital where the Medical Records are also used for educational purposes. Such incomplete Medical Records are not reliable resources for medical care too. Some influencing factors external to the structure of the Medical Records (i.e. human factors and work conditions) are involved.</p

    Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

    Get PDF
    Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-κB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.We thank all members of the Brain Metastasis Group and A. Chalmers, E. Wagner, O. Fernández-Capetillo, R. Ciérvide and A. Hidalgo for critical discussion of the manuscript; the CNIO Core Facilities for their excellent assistance; and Fox Chase Cancer Center Transgenic Facility for generation of S100A9 mice. We thank EuCOMM repository for providing S100A9 targeted embryonic stem cells. We also thank J. Massagué (MSKCC) for some of the BrM cell lines and M. Bosenberg (Yale) for the YUMM1.1 cell line. Samples from patients included in this study that provided by the Girona Biomedical Research Institute (IDIBGI) (Biobanc IDIBGI, B.0000872) are integrated into the Spanish National Biobanks Network and in the Xarxa de Bancs de Tumors de Catalunya (XBTC) financed by the Pla Director d’Oncologia de Catalunya. All patients consented to the storage of these samples in the biobank and for their use in research projects. This study was funded by MINECO (SAF2017-89643-R) (M.V.), Fundació La Marató de TV3 (201906-30-31-32) (J.B.-B., M.V. and A.C.), Fundación Ramón Areces (CIVP19S8163) (M.V.) and CIVP20S10662 (E.O.P.), Worldwide Cancer Research (19-0177) (M.V. and E.C.-J.M.), Cancer Research Institute (Clinic and Laboratory Integration Program CRI Award 2018 (54545) (M.V.), AECC (Coordinated Translational Groups 2017 (GCTRA16015SEOA) (M.V.), LAB AECC 2019 (LABAE19002VALI) (M.V.), ERC CoG (864759) (M.V.), Portuguese Foundation for Science and Technology (SFRH/bd/100089/2014) (C.M.), Boehringer-Ingelheim Fonds MD Fellowship (L.M.), La Caixa International PhD Program Fellowship-Marie Skłodowska-Curie (LCF/BQ/DI17/11620028) (P.G.-G.), La Caixa INPhINIT Fellowship (LCF/BQ/DI19/11730044) (A.P.-A.), MINECO-Severo Ochoa PhD Fellowship (BES-2017-081995) (L.A.-E.) and an AECC postdoctoral fellowship (POSTD19016PRIE) (N.P.). M.V. is an EMBO YIP member (4053). Additional support was provided by Gertrud and Erich Roggenbuck Stiftung (M.M.), Science Foundation Ireland Frontiers for the Future Award (19/FFP/6443) (L.Y.), Science Foundation Ireland Strategic Partnership Programme, Precision Oncology Ireland (18/SPP/3522) (L.Y.), Breast Cancer Now Fellowship Award with the generous support of Walk the Walk (2019AugSF1310) (D.V.), Science Foundation Ireland (20/FFP-P/8597) (D.V.), Paradifference Foundation (C.F.-T.), “la Caixa” Foundation (ID 100010434) (A.I.), European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 847648 (CF/BQ/PI20/11760029) (A.I.), Champalimaud Centre for the Unknown (N.S.), Lisboa Regional Operational Programme (Lisboa 2020) (LISBOA01-0145-FEDER-022170) (N.S.), NCI (R01 CA227629; R01 CA218133) (S.I.G.), Fundació Roses Contra el Càncer (J.B.-B.), Ministerio de Universidades FPU Fellowship (FPU 18/00069) (P.T.), MICIN-Agencia Estatal de Investigación Fellowships (PRE2020-093032 and BES-2017-080415) (P.M. and E. Cintado, respectively), Ministerio de Ciencia, Innovación y Universidades-E050251 (PID2019-110292RB-I00) (J.L.T.), FCT (PTDC/MED-ONC/32222/2017) (C.C.F.), Fundação Millennium bcp (C.C.F.), private donations (C.C.F.) and the Foundation for Applied Cancer Research in Zurich (E.L.R. and M.W.)

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Circulating tumor cell dissemination after cement augmentation of vertebral metastases

    No full text
    Gore's Octopus photographed May 2002. OC4

    Circulating tumor cell dissemination after cement augmentation of vertebral metastases

    No full text
    corecore