59 research outputs found

    Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations

    Get PDF
    Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR) (MIM No.152950) is a rare autosomal dominant condition for which a causative gene has recently been identified. Mutations in the kinesin family member 11 (KIF11) gene have now been described in 16 families worldwide. This is a review of the condition based on the clinical features of 37 individuals from 22 families. This report includes nine previously unreported families and additional information for some of those reported previously. The condition arose de novo in 8/20 families (40%). The parental results were not available for two probands. The mutations were varied and include missense, nonsense, frameshift, and splice site and are distributed evenly throughout the KIF11 gene. In our cohort, 86% had microcephaly, 78% had an ocular abnormality consistent with the diagnosis, 46% had lymphoedema, 73% had mild-moderate learning difficulties, 8% had epilepsy, and 8% had a cardiac anomaly. We identified three individuals with KIF11 mutations but no clinical features of MCLMR demonstrating reduced penetrance. The variable expression of the phenotype and the presence of mildly affected individuals indicates that the prevalence may be higher than expected, and we would therefore recommend a low threshold for genetic testing

    Zur Frage vergleichbarer Geschwulststatistiken

    No full text

    Complexity vs. Simplicity: Groundwater Model Ranking Using Information Criteria

    No full text
    A groundwater model characterized by a lack of field data about hydraulic model parameters and boundary conditions combined with many observation data sets for calibration purpose was investigated concerning model uncertainty. Seven different conceptual models with a stepwise increase from 0 to 30 adjustable parameters were calibrated using PEST. Residuals, sensitivities, the Akaike information criterion (AIC and AICc), Bayesian information criterion (BIC), and Kashyap's information criterion (KIC) were calculated for a set of seven inverse calibrated models with increasing complexity. Finally, the likelihood of each model was computed. Comparing only residuals of the different conceptual models leads to an overparameterization and certainty loss in the conceptual model approach. The model employing only uncalibrated hydraulic parameters, estimated from sedimentological information, obtained the worst AIC, BIC, and KIC values. Using only sedimentological data to derive hydraulic parameters introduces a systematic error into the simulation results and cannot be recommended for generating a valuable model. For numerical investigations with high numbers of calibration data the BIC and KIC select as optimal a simpler model than the AIC. The model with 15 adjusted parameters was evaluated by AIC as the best option and obtained a likelihood of 98%. The AIC disregards the potential model structure error and the selection of the KIC is, therefore, more appropriate. Sensitivities to piezometric heads were highest for the model with only five adjustable parameters and sensitivity coefficients were directly influenced by the changes in extracted groundwater volumes
    • …
    corecore