243 research outputs found

    Kinetics of spin coherence of electrons in an undoped semiconductor quantum well

    Full text link
    We study the kinetics of spin coherence of optically excited electrons in an undoped insulating ZnSe/Zn1x_{1-x}Cdx_xSe quantum well under moderate magnetic fields in the Voigt configuration. After clarifying the optical coherence and the spin coherence, we build the kinetic Bloch equations and calculate dephasing and relaxation kinetics of laser pulse excited plasma due to statically screened Coulomb scattering and electron hole spin exchange. We find that the Coulomb scattering can not cause the spin dephasing, and that the electron-hole spin exchange is the main mechanism of the spin decoherence. Moreover the beat frequency in the Faraday rotation angle is determined mainly by the Zeeman splitting, red shifted by the Coulomb scattering and the electron hole spin exchange. Our numerical results are in agreement with experiment findings. A possible scenario for the contribution of electron-hole spin exchange to the spin dephasing of the nn-doped material is also proposed.Comment: 12 pages, RevTex, 11 figures, scheduled to publish in PRB Jan. 15, 200

    On the Electrostatic Calculation of the ESCA Chemical Shifts

    Get PDF
    The electrostatic formula for the calculation of the ESCA chemical shifts is developed within the framework of the INDO approximation and by using Taylor expansion of the 1/r operator. The INDO wavefunctions were employed for the calculation of the ls electron binding energy changes in some characteristic organic molecules. It was shown that the electrostatic formula based on the point charge approximation workls quite well and that the inclusion of the polarized charge cloud does not improve the results to any significant extent

    Localization and entanglement of two interacting electrons in a quantum-dot molecule

    Full text link
    The localization of two interacting electrons in a coupled-quantum-dots semiconductor structure is demonstrated through numerical calculations of the time evolution of the two-electron wave function including the Coulomb interaction between the electrons. The transition from the ground state to a localized state is induced by an external, time-dependent, uniform electric field. It is found that while an appropriate constant field can localize both electrons in one of the wells, oscillatory fields can induce roughly equal probabilities for both electrons to be localized in either well, generating an interesting type of localized and entangled state. We also show that shifting the field suddenly to an appropriate constant value can maintain in time both types of localization.Comment: 4 pages, 4 figure

    Level Set Approach to Reversible Epitaxial Growth

    Full text link
    We generalize the level set approach to model epitaxial growth to include thermal detachment of atoms from island edges. This means that islands do not always grow and island dissociation can occur. We make no assumptions about a critical nucleus. Excellent quantitative agreement is obtained with kinetic Monte Carlo simulations for island densities and island size distributions in the submonolayer regime.Comment: 7 pages, 9 figure

    Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap

    Get PDF
    It has been shown recently that while bulk gold is chemically inert, small Au clusters are catalytically active. The reasons for this activity and its dramatic dependence on cluster size are not understood. We use density functional theory to study O2 binding to Au clusters and to a Au(111) surface modified by adsorption of Au clusters on it. We find that O2 does not bind to a flat face of a planar Au cluster, even though it binds well to its edge. Moreover, O2 binds to Au clusters deposited on a Au(111) surface, even though it does not bind to Au(111). This indicates that a band gap is not an essential factor in binding O2, but surface roughness is. Adding electrons to the surface of a Au(111) slab, on which one has deposited a Au cluster, increases the binding energy of O2. However, adding electrons to a flat Ausurface has no effect on O2binding energy. These observations have a simple explanation: in clusters and in the rough surface, the highest occupied molecular orbital (HOMO) is localized and its charge density sticks out in the vacuum. This facilitates charge transfer into the π* orbital of O2, which induces the molecule to bind to gold. A flat face of a cluster or a flat bulk surface tends to delocalize the HOMO, diminishing the ability of the surface to bind O2. The same statements are true for the LUMO orbital, which is occupied by the additional electron given to the system to charge the system negatively

    Casimir effect: running Newton constant or cosmological term

    Get PDF
    We argue that the instability of Euclidean Einstein gravity is an indication that the vacuum is non perturbative and contains a condensate of the metric tensor in a manner reminiscent of Yang-Mills theories. As a simple step toward the characterization of such a vacuum the value of the one-loop effective action is computed for Euclidean de Sitter spaces as a function of the curvature when the unstable conformal modes are held fixed. Two phases are found, one where the curvature is large and gravitons should be confined and another one which appears to be weakly coupled and tends to be flat. The induced cosmological constant is positive or negative in the strongly or weakly curved phase, respectively. The relevance of the Casimir effect in understanding the UV sensitivity of gravity is pointed out.Comment: Final, slightly extended version, to appear in Classical and Quantum Gravit
    corecore