182 research outputs found

    HIV-1 co-infection does not reduce exposure to rifampicin, isoniazid, and pyrazinamide in South African tuberculosis outpatients

    No full text
    There are contrasting data in the literature about antituberculosis plasma drug concentrations in HIV-1-coinfected patients. We report the pharmacokinetics of rifampin, isoniazid, and pyrazinamide in a cohort of patients being treated for active tuberculosis, the majority of whom were coinfected with HIV-1 and had commenced antiretroviral therapy within 2 months of starting antituberculosis treatment. We also examined the association between antituberculosis drug concentrations and reported drug side effects at the 2-month clinical review. One hundred patients with pulmonary tuberculosis (65% coinfected with HIV-1) were intensively sampled to determine rifampin, isoniazid, and pyrazinamide plasma concentrations after 7 to 8 weeks of a daily quadruple-therapy regimen dosed according to World Health Organization (WHO) weight bands. Pharmacokinetic parameters were determined for each patient by using nonlinear mixed-effects models. HIV-1-coinfected patients had lower clearance rates for rifampin (21% decrease) and isoniazid (23% decrease) than HIV-1-uninfected patients, with resulting higher areas under the concentration-time curve from 0 to 24 h (AUC0–24) and maximum concentrations of drug in serum (Cmax). Antiretroviral therapy (ART) that included double-standard-dose lopinavir/ritonavir further lowered rifampin clearance, by 46%, and increased the AUC0–24. The current uniform dosing (per kilogram of body weight) across WHO weight bands was associated with a trend of decreased pharmacokinetic exposures for the lowest weight band. Use of fat-free mass as opposed to total body weight for allometric scaling of clearance significantly improved the model. Ambulant HIV-1-coinfected patients, the majority of whom were coprescribed ART, did not have reduced antituberculosis drug concentrations compared to HIV-1-uninfected patients

    Pharmacokinetics of antiretroviral drugs in infancy

    Get PDF
    Dosing in infancy is complicated by inadequate characterisation of pharmacokinetics, unpredictable drug concentrations and a lack of suitable dosage forms. Additional challenges are presented by the concomitant administration of interacting drugs (e.g. rifampicin in antituberculosis treatment) and disease conditions that may alter drug disposition. The extent and implications of breastmilk transfer of drugs to the infant are poorly understood. New technologies facilitate pharmacokinetic studies in infants and will improve access to therapeutic drug monitoring

    Standardized Methods for Enhanced Quality and Comparability of Tuberculous Meningitis Studies

    Get PDF
    Tuberculous meningitis (TBM) remains a major cause of death and disability in tuberculosis-endemic areas, especially in young children and immunocompromised adults. Research aimed at improving outcomes is hampered by poor standardization, which limits study comparison and the generalizability of results. We propose standardized methods for the conduct of TBM clinical research that were drafted at an international tuberculous meningitis research meeting organized by the Oxford University Clinical Research Unit in Vietnam. We propose a core dataset including demographic and clinical information to be collected at study enrollment, important aspects related to patient management and monitoring, and standardized reporting of patient outcomes. The criteria proposed for the conduct of observational and intervention TBM studies should improve the quality of future research outputs, can facilitate multicenter studies and meta-analyses of pooled data, and could provide the foundation for a global TBM data repository

    Shorter treatment for minimal tuberculosis (TB) in children (SHINE): A study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Tuberculosis (TB) in children is frequently paucibacillary and non-severe forms of pulmonary TB are common. Evidence for tuberculosis treatment in children is largely extrapolated from adult studies. Trials in adults with smear-negative tuberculosis suggest that treatment can be effectively shortened from 6 to 4 months. New paediatric, fixed-dose combination anti-tuberculosis treatments have recently been introduced in many countries, making the implementation of World Health Organisation (WHO)-revised dosing recommendations feasible. The safety and efficacy of these higher drug doses has not been systematically assessed in large studies in children, and the pharmacokinetics across children representing the range of weights and ages should be confirmed. METHODS/DESIGN: SHINE is a multicentre, open-label, parallel-group, non-inferiority, randomised controlled, two-arm trial comparing a 4-month vs the standard 6-month regimen using revised WHO paediatric anti-tuberculosis drug doses. We aim to recruit 1200 African and Indian children aged below 16 years with non-severe TB, with or without HIV infection. The primary efficacy and safety endpoints are TB disease-free survival 72 weeks post randomisation and grade 3 or 4 adverse events. Nested pharmacokinetic studies will evaluate anti-tuberculosis drug concentrations, providing model-based predictions for optimal dosing, and measure antiretroviral exposures in order to describe the drug-drug interactions in a subset of HIV-infected children. Socioeconomic analyses will evaluate the cost-effectiveness of the intervention and social science studies will further explore the acceptability and palatability of these new paediatric drug formulations. DISCUSSION: Although recent trials of TB treatment-shortening in adults with sputum-positivity have not been successful, the question has never been addressed in children, who have mainly paucibacillary, non-severe smear-negative disease. SHINE should inform whether treatment-shortening of drug-susceptible TB in children, regardless of HIV status, is efficacious and safe. The trial will also fill existing gaps in knowledge on dosing and acceptability of new anti-tuberculosis formulations and commonly used HIV drugs in settings with a high burden of TB. A positive result from this trial could simplify and shorten treatment, improve adherence and be cost-saving for many children with TB. Recruitment to the SHINE trial begun in July 2016; results are expected in 2020

    Abacavir, zidovudine, or stavudine as paediatric tablets for African HIV-infected children (CHAPAS-3): an open-label, parallel-group, randomised controlled trial

    Get PDF
    BACKGROUND: WHO 2013 guidelines recommend universal treatment for HIV-infected children younger than 5 years. No paediatric trials have compared nucleoside reverse-transcriptase inhibitors (NRTIs) in first-line antiretroviral therapy (ART) in Africa, where most HIV-infected children live. We aimed to compare stavudine, zidovudine, or abacavir as dual or triple fixed-dose-combination paediatric tablets with lamivudine and nevirapine or efavirenz. METHODS: In this open-label, parallel-group, randomised trial (CHAPAS-3), we enrolled children from one centre in Zambia and three in Uganda who were previously untreated (ART naive) or on stavudine for more than 2 years with viral load less than 50 copies per mL (ART experienced). Computer-generated randomisation tables were incorporated securely within the database. The primary endpoint was grade 2-4 clinical or grade 3/4 laboratory adverse events. Analysis was intention to treat. This trial is registered with the ISRCTN Registry number, 69078957. FINDINGS: Between Nov 8, 2010, and Dec 28, 2011, 480 children were randomised: 156 to stavudine, 159 to zidovudine, and 165 to abacavir. After two were excluded due to randomisation error, 156 children were analysed in the stavudine group, 158 in the zidovudine group, and 164 in the abacavir group, and followed for median 2·3 years (5% lost to follow-up). 365 (76%) were ART naive (median age 2·6 years vs 6·2 years in ART experienced). 917 grade 2-4 clinical or grade 3/4 laboratory adverse events (835 clinical [634 grade 2]; 40 laboratory) occurred in 104 (67%) children on stavudine, 103 (65%) on zidovudine, and 105 (64%), on abacavir (p=0·63; zidovudine vs stavudine: hazard ratio [HR] 0·99 [95% CI 0·75-1·29]; abacavir vs stavudine: HR 0·88 [0·67-1·15]). At 48 weeks, 98 (85%), 81 (80%) and 95 (81%) ART-naive children in the stavudine, zidovudine, and abacavir groups, respectively, had viral load less than 400 copies per mL (p=0·58); most ART-experienced children maintained suppression (p=1·00). INTERPRETATION: All NRTIs had low toxicity and good clinical, immunological, and virological responses. Clinical and subclinical lipodystrophy was not noted in those younger than 5 years and anaemia was no more frequent with zidovudine than with the other drugs. Absence of hypersensitivity reactions, superior resistance profile and once-daily dosing favours abacavir for African children, supporting WHO 2013 guidelines. FUNDING: European Developing Countries Clinical Trials Partnership

    The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis.

    Get PDF
    Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues

    Population pharmacokinetics of lopinavir and ritonavir in combination with rifampicin-based antitubercular treatment in HIV-infected children

    Get PDF
    Children with HIV associated tuberculosis often require co-formulated lopinavir/ritonavir (LPV/RTV)-based antiretroviral treatment with rifampicin-based antitubercular treatment (ATT). Rifampicin (RIF), a potent inducer of drug-metabolizing systems, profoundly reduces the bioavailability of LPV. The aims of this study were to develop an integrated population pharmacokinetic (PK) model describing LPV and RTV PK in children with and without concomitant ATT using two different dosing approaches and to estimate doses of LPV/RTV achieving target exposures during ATT in young children

    Concentration-dependent antagonism and culture conversion in pulmonary tuberculosis

    Get PDF
    Background There is scant evidence to support target drug exposures for optimal tuberculosis outcomes. We therefore assessed whether pharmacokinetic/pharmacodynamic (PK/PD) parameters could predict 2-month culture conversion. Methods One hundred patients with pulmonary tuberculosis (65% HIV-co-infected) were intensively sampled to determine rifampicin, isoniazid and pyrazinamide plasma concentrations after 7-8 weeks of therapy, and pharmacokinetic parameters determined using non-linear-mixed-effects models. Detailed clinical data and sputum for culture were collected at baseline, 2 and 5-6 months. Minimum inhibitory concentrations (MIC) were determined on baseline isolates. Multivariate logistic regression and the assumption-free multivariate adaptive regression splines (MARS) were used to identify clinical and PK/PD predictors of 2-month culture conversion. Potential PK/PD predictors included 24-hour-area-under-the-curve (AUC0-24), peak concentration (Cmax), AUC0-24/MIC, Cmax/MIC and % time that concentrations persisted above MIC (%TMIC). Results 26% of patients had Cmax (mg/L) of rifampicin4.6 mg/L, higher isoniazid exposures were associated with improved rates of culture conversion. Conclusions PK/PD analyses using MARS identified isoniazid Cmax and rifampicin Cmax/MIC thresholds below which there is concentration-dependent antagonism that reduces 2-month sputum culture conversion

    Abacavir pharmacokinetics in African children living with HIV: A pooled analysis describing the effects of age, malnutrition and common concomitant medications

    Get PDF
    AIMS: Abacavir is part of WHO-recommended regimens to treat HIV in children under 15 years of age. In a pooled analysis across four studies, we describe abacavir population pharmacokinetics to investigate the influence of age, concomitant medications, malnutrition and formulation. METHODS: A total of 230 HIV-infected African children were included, with median (range) age of 2.1 (0.1-12.8) years and weight of 9.8 (2.5-30.0) kg. The population pharmacokinetics of abacavir was described using nonlinear mixed-effects modelling. RESULTS: Abacavir pharmacokinetics was best described by a two-compartment model with first-order elimination, and absorption described by transit compartments. Clearance was predicted around 54% of its mature value at birth and 90% at 10 months. The estimated typical clearance at steady state was 10.7 L/h in a child weighing 9.8 kg co-treated with lopinavir/ritonavir, and was 12% higher in children receiving efavirenz. During co-administration of rifampicin-based antituberculosis treatment and super-boosted lopinavir in a 1:1 ratio with ritonavir, abacavir exposure decreased by 29.4%. Malnourished children living with HIV had higher abacavir exposure initially, but this effect waned with nutritional rehabilitation. An additional 18.4% reduction in clearance after the first abacavir dose was described, suggesting induction of clearance with time on lopinavir/ritonavir-based therapy. Finally, absorption of the fixed dose combination tablet was 24% slower than the abacavir liquid formulation. CONCLUSION: In this pooled analysis we found that children on lopinavir/ritonavir or efavirenz had similar abacavir exposures, while concomitant TB treatment and super-boosted lopinavir gave significantly reduced abacavir concentrations

    Pharmacokinetics and safety of rifabutin in young HIV-infected children receiving rifabutin and lopinavir/ritonavir

    Get PDF
    ObjectivesCo-treatment of HIV and TB in young children is complicated by limited treatment options and complex drug–drug interactions. Rifabutin is an alternative to rifampicin for adults receiving a ritonavir-boosted PI. We aimed to evaluate the short-term safety and pharmacokinetics of rifabutin when given with lopinavir/ritonavir in children.Patients and methodsWe conducted an open-label study of rifabutin dosed at 5 mg/kg three times a week in HIV-infected children ≤5 years of age receiving lopinavir/ritonavir. Intensive steady-state pharmacokinetic sampling was conducted after six doses. The Division of AIDS 2004, clarification 2009, table for grading severity of adverse events was used to classify drug toxicities. The study was registered with ClinicalTrials.gov, number NCT01259219.ResultsSix children completed the study prior to closure by institutional review boards. The median (range) AUC0–48 of rifabutin was 6.91 (3.52–8.67) μg · h/mL, the median (range) Cmax of rifabutin was 0.39 (0.19–0.46) μg/mL, the median (range) AUC0–48 of 25-O-desacetyl rifabutin was 5.73 (2.85–9.13) μg · h/mL and the median (range) Cmax of 25-O-desacetyl rifabutin was 0.17 (0.08–0.32) μg/mL. The neutrophil count declined in all children; two children experienced grade 4 neutropenia, which resolved rapidly without complications. There was strong correlation between AUC0–48 measures and neutrophil counts.ConclusionsRifabutin dosed at 5 mg/kg three times per week resulted in lower AUC0–48, AUC0–24 and Cmax values for rifabutin and 25-O-desacetyl rifabutin compared with adults receiving 150 mg of rifabutin daily, the current recommended dose. We observed high rates of severe transient neutropenia, possibly due to immaturity of CYP3A4 in young children. It remains unclear whether a safe and effective rifabutin dose exists for treatment of TB in children receiving lopinavir/ritonavir
    corecore