188 research outputs found

    A computational approach to chemical etiologies of diabetes.

    Get PDF
    Computational meta-analysis can link environmental chemicals to genes and proteins involved in human diseases, thereby elucidating possible etiologies and pathogeneses of non-communicable diseases. We used an integrated computational systems biology approach to examine possible pathogenetic linkages in type 2 diabetes (T2D) through genome-wide associations, disease similarities, and published empirical evidence. Ten environmental chemicals were found to be potentially linked to T2D, the highest scores were observed for arsenic, 2,3,7,8-tetrachlorodibenzo-p-dioxin, hexachlorobenzene, and perfluorooctanoic acid. For these substances we integrated disease and pathway annotations on top of protein interactions to reveal possible pathogenetic pathways that deserve empirical testing. The approach is general and can address other public health concerns in addition to identifying diabetogenic chemicals, and offers thus promising guidance for future research in regard to the etiology and pathogenesis of complex diseases

    Assessing the relationship between bpm maturity and the success of organizations

    Get PDF
    Pinto, J., & dos Santos, V. D. (2020). Assessing the relationship between bpm maturity and the success of organizations. In R. Silhavy (Ed.), Applied Informatics and Cybernetics in Intelligent Systems: Proceedings of the 9th Computer Science On-line Conference, CSOC 2020 (pp. 108-126). (Advances in Intelligent Systems and Computing; Vol. 1226 AISC). Springer. https://doi.org/10.1007/978-3-030-51974-2_10For the past decades, organizations have been investing heavily in BPM projects in the hope of improving their competitive advantage in an increasingly complex environment. However, although it is believed that the higher the level of BPM maturity the greater the success of the organization, experience shows that this relationship is not always possible to prove. The purpose of this study is to help clarify the relationship between the level of BPM maturity and the success of an organization. This was done through the implementation of a case study-based research within a global company, focusing on the shared services organization. An analysis of the existing BPM maturity models and its level of coverage of BPM core areas was conducted to select the most suitable BPM maturity model to conduct the assessment of the current BPM maturity level. It was also established a framework to characterize the success of an organization. These two inputs, along with information gathered to understand implemented process improvements, were the basis for conducting the research. Results show a successful organization, with a high maturity level according to the BPM OMG maturity model, that has been investing in continually improving its processes with a strong focus on digital transformation. The identified benefits from a high level of BPM maturity, namely improved productivity, cost reduction, error & risk prevention, higher agility, employee upskilling and knowledge retention, were shown to have a positive influence in the majority of the dimensions used to characterize the success of the organization.authorsversionpublishe

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore