363 research outputs found

    Feature combinations and the Bhattacharyya criterion

    Get PDF
    A procedure for calculating a kxn rank k matrix B for data compression using the Bhattacharyya bound on the probability of error and an iterative construction using Householder transformation was developed. Two sets of remotely sensed agricultural data are used to demonstrate the application of the procedure. The results of the applications gave some indication of the extent to which the Bhattacharyya bound on the probability of error is affected by such transformations for multivariate normal populations

    Multi-electrode nerve cuff recording - model analysis of the effects of finite cuff length

    Get PDF
    The effect of finite cuff length on the signals recorded by electrodes at different positions along the nerve was analysed in a model study. Relations were derived using a one-dimensional model. These were evaluated in a more realistic axially symmetric 3D model. This evaluation indicated that the cuff appeared shorter because of edge effects at the beginning and end of the cuff. The method for velocity selective filtering introduced by Donaldson was subsequently analysed. In this method, velocity selective filtering is achieved by summing the signals of subsequent tripoles after applying time shifts tuned to a certain conduction velocity. It was also found that the optimum electrode distance for a given cuff length for maximum summed RMS of symmetrical tripoles in the cuff is larger than when evaluating peak-peak amplitudes of single fibre action potentials. Velocity selective filtering yields better selectivity when using symmetrical tripoles, but may yield larger signal RMS when using the wider asymmetrical tripoles, potentially allowing for shorter cuffs. It is speculated that application of a multi-electrode reference may improve velocity selectivity for asymmetrical tripoles

    Optical and evaporative cooling of cesium atoms in the gravito-optical surface trap

    Get PDF
    We report on cooling of an atomic cesium gas closely above an evanescent-wave atom mirror. At high densitities, optical cooling based on inelastic reflections is found to be limited by a density-dependent excess temperature and trap loss due to ultracold collisions involving repulsive molecular states. Nevertheless, very good starting conditions for subsequent evaporative cooling are obtained. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude.Comment: 8 pages, 6 figures, submitted to Journal of Modern Optics, special issue "Fundamentals of Quantum Optics V", edited by F. Ehlotzk

    Driving the atom by atomic fluorescence: analytic results for the power and noise spectra

    Get PDF
    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both sub-natural linewidth narrowing and large asymmetries while the spectrum of squeezing narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discussed.Comment: 13 pages, 5 figures; to be published in Phys. Rev. A Changed title and conten

    Underwater Thruster Saturation Detection and Prevention Considering Battery Voltage Sag

    Get PDF
    ABSTRACT This paper reports on the development of a control module that detects and effectively prevents thruster saturation for an autonomous underwater vehicle (AUV). A model has been developed to approximate the maximum available thrust, per thruster, as a function of the battery voltage sag. A thruster would be considered to be in saturation if its reference input exceeds its particular output limit. This ratio can be expressed as a scalar value, which can be used to adjust the reference thrust vector that is fed to the thruster control system. This approach can minimize the total error vector in the vehicle kinematics

    Quantum-gravity-motivated Lorentz-symmetry tests with laser interferometers

    Full text link
    We consider the implications for laser interferometry of the quantum-gravity-motivated modifications in the laws of particle propagation, which are presently being considered in attempts to explain puzzling observations of ultra-high-energy cosmic rays. We show that there are interferometric setups in which the Planck-scale effect on propagation leads to a characteristic signature. A naive estimate is encouraging with respect to the possibility of achieving Planck-scale sensitivity, but we also point out some severe technological challenges which would have to be overcome in order to achieve this sensitivity.Comment: 17 pages, 3 figure

    Using atomic interference to probe atom-surface interaction

    Get PDF
    We show that atomic interference in the reflection from two suitably polarized evanescent waves is sensitive to retardation effects in the atom-surface interaction for specific experimental parameters. We study the limit of short and long atomic de Broglie wavelength. The former case is analyzed in the semiclassical approximation (Landau-Zener model). The latter represents a quantum regime and is analyzed by solving numerically the associated coupled Schroedinger equations. We consider a specific experimental scheme and show the results for rubidium (short wavelength) and the much lighter meta-stable helium atom (long wavelength). The merits of each case are then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX sourc

    A new Doubly Special Relativity theory from a quantum Weyl-Poincare algebra

    Full text link
    A mass-like quantum Weyl-Poincare algebra is proposed to describe, after the identification of the deformation parameter with the Planck length, a new relativistic theory with two observer-independent scales (or DSR theory). Deformed momentum representation, finite boost transformations, range of rapidity, energy and momentum, as well as position and velocity operators are explicitly studied and compared with those of previous DSR theories based on kappa-Poincare algebra. The main novelties of the DSR theory here presented are the new features of momentum saturation and a new type of deformed position operators.Comment: 13 pages, LaTeX; some references and figures added, and terminology is more precis
    • 

    corecore