760 research outputs found

    Reactivation of the mitosis-promoting factor in postmitotic cardiomyocytes

    Get PDF
    Cardiomyocytes cease to divide shortly after birth and an irreversible cell cycle arrest is evident accompanied by the downregulation of cyclin-dependent kinase activities. To get a better understanding of the cardiac cell cycle and its regulation, the effect of functional recovery of the mitosis-promoting factor (MPF) consisting of cyclin B1 and the cyclin-dependent kinase Cdc2 was assessed in primary cultures of postmitotic ventricular adult rat cardiomyocytes ( ARC). Gene transfer into ARC was achieved using the adenovirus-enhanced transferrinfection system that was characterized by the absence of cytotoxic events. Simultaneous ectopic expression of wild-type versions of cyclin B1 and Cdc2 was sufficient to induce MPF activity. Reestablished MPF resulted in a mitotic phenotype, marked by an abnormal condensation of the nuclei, histone H3 phosphorylation and variable degree of decay of the contractile apparatus. Although a complete cell division was not observed, the results provided conclusive evidence that cell cycle-related events in postmitotic cardiomyocytes could be triggered by genetic intervention downstream of the G1/S checkpoint. This will be of importance to design novel strategies to overcome the proliferation arrest in adult cardiomyocytes

    A Positive Relationship Between Religious Faith and Forgiveness: Faith in the Absence of Data?

    Get PDF
    Religious faith and beliefs appear to play an important role in the lives of many individuals and are the topic of much research. The present study investigated the relationship between religious faith and forgiveness in a sample (n = 196) of college students. Students were asked to complete the Heartland Forgiveness Scale and the Santa Clara Strength of Religious Faith Questionnaire. Analyses of scores on both measures revealed a positive, significant correlation between these constructs, suggesting that there is a meaningful relationship between religious faith and the tendency to forgive. Implications and directions for further research are discussed

    A 2-year prospective study of patient-relevant outcomes in patients operated on for knee osteoarthritis with tibial osteotomy

    Get PDF
    BACKGROUND: Tibial osteotomy is a treatment for younger and/or physically active patients suffering from uni-compartmental knee osteoarthritis. The open wedge osteotomy by the hemicallotasis technique includes the use of external fixation. The use of external fixation has several advantages, as early mobilization and the opportunity for optimal correction. However, the hemicallotasis technique has also been described as a cumbersome procedure for the patient. The aim of this study was to prospectively evaluate patient-relevant outcomes during the first 2 post-operative years. Especially the treatment period, during which external fixation was used, was closely monitored. METHODS: In an uncontrolled study, fifty-eight consecutive patients, 30 men and 28 women (mean age 54 years) were operated on by the hemicallotasis technique were evaluated with the patient-relevant outcome measure Knee injury and Osteoarthritis Outcome Score (KOOS) preoperatively, during the treatment with external fixation, one week after removal of the external fixation, at 6 months, and at one and two years postoperatively. RESULTS: At the 2-year postoperative follow-up, all subscales of the KOOS were improved (p < 0.001), mostly in pain (41–80 on a 0–100 worst to best scale) and knee-related quality of life (21–61 on a 0–100 worst to best scale), compared to the preoperative status. Significant improvements in pain and other symptoms, function of daily life and quality of life were seen already during the treatment period (mean 98 ± 18 days) with the external fixation. More demanding functions such as kneeling, squatting, jumping and running, were improved first after extraction of the external fixation device and the pins. CONCLUSION: Tibial osteotomy by the hemicallotasis technique yields large improvement in self-rated pain, function and quality of life, which persists over two years. Surprisingly, large improvements occurred already during the immediate post-operative period when the external fixation was still used

    Semi-invariants of symmetric quivers of finite type

    Get PDF
    Let (Q,σ)(Q,\sigma) be a symmetric quiver, where Q=(Q0,Q1)Q=(Q_0,Q_1) is a finite quiver without oriented cycles and σ\sigma is a contravariant involution on Q0Q1Q_0\sqcup Q_1. The involution allows us to define a nondegenerate bilinear form on a representation $V$ of $Q$. We shall call the representation orthogonal if is symmetric and symplectic if is skew-symmetric. Moreover we can define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. For symmetric quivers of finite type, we prove that the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type cVc^V and, in the case when matrix defining cVc^V is skew-symmetric, by the Pfaffians pfVpf^V

    Density-functional theory of inhomogeneous electron systems in thin quantum wires

    Full text link
    Motivated by current interest in strongly correlated quasi-one-dimensional (1D) Luttinger liquids subject to axial confinement, we present a novel density-functional study of few-electron systems confined by power-low external potentials inside a short portion of a thin quantum wire. The theory employs the 1D homogeneous Coulomb liquid as the reference system for a Kohn-Sham treatment and transfers the Luttinger ground-state correlations to the inhomogeneous electron system by means of a suitable local-density approximation (LDA) to the exchange-correlation energy functional. We show that such 1D-adapted LDA is appropriate for fluid-like states at weak coupling, but fails to account for the transition to a ``Wigner molecules'' regime of electron localization as observed in thin quantum wires at very strong coupling. A detailed analyzes is given for the two-electron problem under axial harmonic confinement.Comment: 8 pages, 7 figures, submitte

    Semi-invariants of symmetric quivers of tame type

    Full text link
    A symmetric quiver (Q,σ)(Q,\sigma) is a finite quiver without oriented cycles Q=(Q0,Q1)Q=(Q_0,Q_1) equipped with a contravariant involution σ\sigma on Q0Q1Q_0\sqcup Q_1. The involution allows us to define a nondegenerate bilinear form on a representation $V$ of $Q$. We shall say that $V$ is orthogonal if is symmetric and symplectic if is skew-symmetric. Moreover, we define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. So we prove that if (Q,σ)(Q,\sigma) is a symmetric quiver of tame type then the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type cVc^V and, when matrix defining cVc^V is skew-symmetric, by the Pfaffians pfVpf^V. To prove it, moreover, we describe the symplectic and orthogonal generic decomposition of a symmetric dimension vector

    Single crystal diamond membranes for nanoelectronics

    Full text link
    © 2018 The Royal Society of Chemistry. Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond

    Isolation, characterisation, and selection of wine yeast strains in Etyek-Buda wine district, Hungary

    Get PDF
    Initiated by the Association “Wine Route of Etyek Wine District”, the objectives of this study were to isolate and identify autochthonous yeast strains from local wines and to determine their oenologically important properties. The first aim of this work was to characterize the taxonomic and phenotypic diversity of the representative Saccharomyces yeast strains that dominate the spontaneous fermentations in this wine district. The results obtained by molecular ribotyping (ARDRA) revealed a strong dominance of S. cerevisiae, but S. bayanus var. uvarum was also present sporadically. Some of the natural isolates exhibited high volatile acid production or poor fermentation capacity, which imply a quality risk in spontaneous fermentations. Most of the isolates, however, displayed good oenological features during lab scale fermentations. As the second aim of this work, the most promising, selected strains were further tested for oenological properties in microvinification scale and, finally, in large scale fermentations. The analytical and sensory analysis proved that selected strains, including S. bayanus var. uvarum, can be used as local starter cultures, which may contribute to the typicality of the local wines in comparison with commercial starters

    The DREAM complex represses growth in response to DNA damage in Arabidopsis

    Get PDF
    The DNA of all organisms is constantly damaged by physiological processes and environmental conditions. Upon persistent damage, plant growth and cell proliferation are reduced. Based on previous findings that RBR1, the only Arabidopsis homolog of the mammalian tumor suppressor gene retinoblastoma, plays a key role in the DNA damage response in plants, we unravel here the network of RBR1 interactors under DNA stress conditions. This led to the identification of homologs of every DREAM component in Arabidopsis, including previously not recognized homologs of LIN52. Interestingly, we also discovered NAC044, a mediator of DNA damage response in plants and close homolog of the major DNA damage regulator SOG1, to directly interact with RBR1 and the DREAM component LIN37B. Consistently, not only mutants in NAC044 but also the double mutant of the two LIN37 homologs and mutants for the DREAM component E2FB showed reduced sensitivities to DNA-damaging conditions. Our work indicates the existence of multiple DREAM complexes that work in conjunction with NAC044 to mediate growth arrest after DNA damage. © 2021 Rockefeller University Press. All rights reserved
    corecore