2,082 research outputs found
Design, development and test of shuttle/Centaur G-prime cryogenic tankage thermal protection systems
The thermal protection systems for the shuttle/Centaur would have had to provide fail-safe thermal protection during prelaunch, launch ascent, and on-orbit operations as well as during potential abort. The thermal protection systems selected used a helium-purged polyimide foam beneath three rediation shields for the liquid-hydrogen tank and radiation shields only for the liquid-oxygen tank (three shields on the tank sidewall and four on the aft bulkhead). A double-walled vacuum bulkhead separated the two tanks. The liquid-hydrogen tank had one 0.75-in-thick layer of foam on the forward bulkhead and two layers on the larger area sidewall. Full scale tests of the flight vehicle in a simulated shuttle cargo bay that was purged with gaseous nitrogen gave total prelaunch heating rates of 88,500 Btu/hr and 44,000 Btu/hr for the liquid-hydrogen and -oxygen tanks, respectively. Calorimeter tests on a representative sample of the liquid-hydrogen tank sidewall thermal protection system indicated that the measured unit heating rate would rapidly decrease from the prelaunch rate of approx 100 Btu/hr/sq ft to a desired rate of less than 1.3 Btu/hr/sq ft once on orbit
Simulations of a lattice model of two-headed linear amphiphiles: influence of amphiphile asymmetry
Using a 2D lattice model, we conduct Monte Carlo simulations of micellar
aggregation of linear-chain amphiphiles having two solvophilic head groups. In
the context of this simple model, we quantify how the amphiphile architecture
influences the critical micelle concentration (CMC), with a particular focus on
the role of the asymmetry of the amphiphile structure. Accordingly, we study
all possible arrangements of the head groups along amphiphile chains of fixed
length and 16 molecular units. This set of idealized amphiphile
architectures approximates many cases of symmetric and asymmetric gemini
surfactants, double-headed surfactants and boloform surfactants. Consistent
with earlier results, we find that the number of spacer units separating
the heads has a significant influence on the CMC, with the CMC increasing with
for . In comparison, the influence of the asymmetry of the chain
architecture on the CMC is much weaker, as is also found experimentally.Comment: 30 pages, 17 fgure
Simulations of a lattice model of two-headed linear amphiphiles: influence of amphiphile asymmetry
Using a 2D lattice model, we conduct Monte Carlo simulations of micellar
aggregation of linear-chain amphiphiles having two solvophilic head groups. In
the context of this simple model, we quantify how the amphiphile architecture
influences the critical micelle concentration (CMC), with a particular focus on
the role of the asymmetry of the amphiphile structure. Accordingly, we study
all possible arrangements of the head groups along amphiphile chains of fixed
length and 16 molecular units. This set of idealized amphiphile
architectures approximates many cases of symmetric and asymmetric gemini
surfactants, double-headed surfactants and boloform surfactants. Consistent
with earlier results, we find that the number of spacer units separating
the heads has a significant influence on the CMC, with the CMC increasing with
for . In comparison, the influence of the asymmetry of the chain
architecture on the CMC is much weaker, as is also found experimentally.Comment: 30 pages, 17 fgure
Invasive Haemophilus influenzae Disease in Adults ≥65 Years, United States, 2011.
BackgroundSince the introduction of the Haemophilus influenzae serotype b vaccine, H influenzae epidemiology has shifted. In the United States, the largest burden of disease is now in adults aged ≥65 years. However, few data exist on risk factors for disease severity and outcome in this age group.MethodsA retrospective case-series review of invasive H influenzae infections in patients aged ≥65 years was conducted for hospitalized cases reported to Active Bacterial Core surveillance in 2011.ResultsThere were 299 hospitalized cases included in the analysis. The majority of cases were caused by nontypeable H influenzae, and the overall case fatality ratio (CFR) was 19.5%. Three or more underlying conditions were present in 63% of cases; 94% of cases had at least 1. Patients with chronic heart conditions (congestive heart failure, coronary artery disease, and/or atrial fibrillation) (odds ratio [OR], 3.27; 95% confidence interval [CI], 1.65-6.46), patients from private residences (OR, 8.75; 95% CI, 2.13-35.95), and patients who were not resuscitate status (OR, 2.72; 95% CI, 1.31-5.66) were more likely to be admitted to the intensive care unit (ICU). Intensive care unit admission (OR, 3.75; 95% CI, 1.71-8.22) and do not resuscitate status (OR, 12.94; 95% CI, 4.84-34.55) were significantly associated with death.ConclusionsWithin this age group, burden of disease and CFR both increased significantly as age increased. Using ICU admission as a proxy for disease severity, our findings suggest several conditions increased risk of disease severity and patients with severe disease were more likely to die. Further research is needed to determine the most effective approach to prevent H influenzae disease and mortality in older adults
Meningococcal Disease in Patients With Human Immunodeficiency Virus Infection: A Review of Cases Reported Through Active Surveillance in the United States, 2000-2008.
BackgroundAlthough human immunodeficiency virus (HIV) infection is an established risk factor for several bacterial infections, the association between HIV infection and meningococcal disease remains unclear.MethodsExpanded chart reviews were completed on persons with meningococcal disease and HIV infection reported from 2000 through 2008 from 9 US sites participating in an active population-based surveillance system for meningococcal disease. The incidence of meningococcal disease among patients meeting Centers for Disease Control and Prevention acquired immune deficiency syndrome (AIDS) surveillance criteria was estimated using data from the National HIV Surveillance System for the participating sites.ResultsThirty-three cases of meningococcal disease in individuals with HIV infection were reported from participating sites, representing 2.0% of all reported meningococcal disease cases. Most (75.8%) persons with HIV infection were adult males aged 25 to 64 years old. Among all meningococcal disease cases aged 25 to 64 years old, case fatality ratios were similar among HIV-infected and HIV-uninfected persons (13.3% vs 10.6%; P = .6). The cumulative, mean incidence of meningococcal disease among patients aged 25 to 64 years old with HIV infection ever classified as AIDS was 3.5 cases per 100000 person years (95% confidence interval [CI], 2.1-5.6), compared with 0.3 cases per 100000 person years (95% CI, 0.3-0.3) for persons of the same age group not reported to have AIDS (relative risk = 12.9; 95% CI, 7.9-20.9).ConclusionsIndividuals with HIV infection meeting the AIDS surveillance case definition have a higher incidence of meningococcal disease compared with the general adult population
Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation
Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this.
Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum.
Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum
Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1
A dinuclear ruthenium(II) phototherapeutic that targets duplex and quadruplex DNA
With the aim of developing a sensitizer for photodynamic therapy, a previously reported luminescent dinuclear complex that functions as a DNA probe in live cells was modified to produce a new isostructural derivative containing RuII(TAP)2 fragments (TAP = 1,4,5,8- tetraazaphenanthrene). The structure of the new complex has been confirmed by a variety of techniques including single crystal X-ray analysis. Unlike its parent, the new complex displays RuL-based 3MLCT emission in both MeCN and water. Results from electrochemical studies and emission quenching experiments involving guanosine monophosphate are consistent with an excited state located on a TAP moiety. This hypothesis is further supported by detailed DFT calculations, which take into account solvent effects on excited state dynamics. Cell-free steady-state and time-resolved optical studies on the interaction of the new complex with duplex and quadruplex DNA show that the complex binds with high affinity to both structures and indicate that its photoexcited state is also quenched by DNA, a process that is accompanied by the generation of the guanine radical cation sites as photo-oxidization products. Like the parent complex, this new compound is taken up by live cells where it primarily localizes within the nucleus and displays low cytotoxicity in the absence of light. However, in complete contrast to [{RuII(phen)2}2(tpphz)]4+, the new complex is therapeutically activated by light to become highly phototoxic toward malignant human melanoma cell line showing that it is a promising lead for the treatment of this recalcitrant cancer.EPSRC grant EP/M015572/1
Unviersity of Sheffield/EPSRC Doctoral Fellowship Prize
EPSRC Capital Equipment Award
ERASMUS
Imprisonment and internment: Comparing penal facilities North and South
Recent references to the ‘warehouse prison’ in the United States and the prisión-depósito in Latin America seem to indicate that penal confinement in the western hemisphere
has converged on a similar model. However, this article suggests otherwise. It contrasts penal facilities in North America and Latin America in terms of six interrelated aspects: regimentation; surveillance; isolation; supervision; accountability; and formalization. Quantitatively, control in North American penal facilities is assiduous (unceasing, persistent and intrusive), while in Latin America it is perfunctory (sporadic, indifferent and cursory). Qualitatively, North American penal facilities produce imprisonment (which enacts penal intervention through confinement), while in Latin America they produce internment (which enacts penal intervention through release). Closely entwined with this qualitative difference are distinct practices of judicial involvement in sentencing and penal supervision. Those practices, and the cultural and political factors that underpin them, represent an interesting starting point for the explanation of the contrasting nature of imprisonment and internment
- …
