178 research outputs found

    Argentine Dirty War : Human Rights Law and Literature

    Get PDF
    In 1973 Gen. Juan Domingo Peron was voted into office as President of Argentina after an 18 year exile. He died the following year in 197 4 when his second wife, Isabella Peron, served as his successor. In 1976 the military overthrew Isabella Peron as part of their calling to restore law and order to a chaotic Argentina. To do so, the military declared an all out war on any sectors of life which could be viewed as a threat to the maintenance of military rule. This objective, offic-ially known as the Proceso but dubbed by the public as the dirty war, lasted from 1976 to 1983 when democracy was finally restored to rebuild the aftermath of the Argentine economy, society and morale caused by the Malvinas/Falkland Island defeat by Great Britain. It was the most abusive regime to rule Argentina in its history. During its course, an estimated 20,000 to 30,000 Argentines including women and children of all walks of life were disappeared by the military dictatorship led by the government of Gen. Jorge Rafael Videla. It is the goal of this study to understand the dirty war in Argentina through an exposure to and understanding of the myriad of social protest literature and the development of human rights legislation both within Argentina and on a world scale. Not only is it important to the reader and his larger society to gain exposure to the truth behind history and humanity which is mirrored through such laws and works but, on a larger scale, such a reflection will hopefully illuminate how crucial a role law and literature plays as the central nerve cell of the living memory of a people as it is passed down from generation to generation. This essay will focus on a number of legal treaties, conventions, court decisions, legislation and authors and their works which tell the truth of the dirty war. It will discuss not only collective and individual themes found in such a diverse body of law and literature, but it will continue to focus on the development of such human rights laws as well as styles, narrative points of views, literary techniques, and the significant effects of these works. How does the author help shatter the silence through his work(s)? What laws have come about because of this tragedy that will place a barrier to human rights abuses within Argentina and the international community at large? These and a variety of other crucial issues will be addressed in the following study of contemporary human rights law and literature of the dirty war in Argentina

    Biosensor Based on Ultrasmall MoS2 Nanoparticles for Electrochemical Detection of H2O2 Released by Cells at the Nanomolar Level

    Get PDF
    Monodispersed surfactant-free MoS2 nanoparticles with sizes of less than 2 nm were prepared from bulk MoS2 by simple ultrasonication and gradient centrifugation. The ultrasmall MoS2 nanoparticles expose a large fraction of edge sites, along with their high surface area, which lead to attractive electrocatalytic activity for reduction of H2O2. An extremely sensitive H2O2 biosensor based on MoS2 nanoparticles with a real determination limit as low as 2.5 nM and wide linear range of 5 orders of magnitude was constructed. On the basis of this biosensor, the trace amount of H2O2 released from Raw 264.7 cells was successfully recorded, and an efficient glucose biosensor was also fabricated. Since H2O2 is a byproduct of many oxidative biological reactions, this work serves as a pathway for the application of MoS2 in the fields of electrochemical sensing and bioanalysis.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000326711400047&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Chemistry, AnalyticalSCI(E)EIPubMed75ARTICLE2110289-102958

    Atherosclerotic pattern of coronary myocardial bridging assessed with CT coronary angiography

    Get PDF
    The aim of our study was to evaluate the atherosclerotic pattern of patients with coronary myocardial bridging (MB) by means of CT Coronary Angiography (CT-CA). 254 consecutive patients (166 male, mean age 58.6 Β± 10.3) who underwent 64-slice CT-CA according to current clinical indications were reviewed for the presence of MB and concomitant segmental atherosclerotic pattern. Coronary plaques were assessed in all patients enrolled. 73 patients (29%) presented single (90%) or multiple (10%) MB, frequently (93%) localized in the mid-distal left anterior descending artery. The MB segment was always free of atherosclerosis. Segments proximal to the MB presented: no atherosclerotic disease (n = 37), positive remodeling (n = 23), 50% stenoses (n = 7). Distal segments presented a different atherosclerosis pattern (P < 0.0001): absence of disease (n = 73), no significant lesions (n = 8). No significant differences were found between segments proximal to MB and proximal coronary segments apart from left main trunk. Pattern of atherosclerotic lesions located in segments 6 and 7 significantly differs between patients with MB and patients without MB (P < 0.05). CT-CA is a reliable method to non-invasively demonstrate MB and related atherosclerotic pattern. CT-CA provides new insight regarding atherosclerosis distribution in segments close to MB

    Ξ³COP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    Get PDF
    Background: There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the Ξ³COP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings: We found that Ξ³COP is essential for the viability of the Drosophila embryo. In the absence of zygotic Ξ³COP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in Ξ³COP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, Ξ³COP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in Ξ³COP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance: These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of Ξ³COP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the Ξ³COP phenotype to the effect on a specific key target protein

    Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux

    Get PDF
    SUMMARY Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure

    Toll-8/Tollo Negatively Regulates Antimicrobial Response in the Drosophila Respiratory Epithelium

    Get PDF
    Barrier epithelia that are persistently exposed to microbes have evolved potent immune tools to eliminate such pathogens. If mechanisms that control Drosophila systemic responses are well-characterized, the epithelial immune responses remain poorly understood. Here, we performed a genetic dissection of the cascades activated during the immune response of the Drosophila airway epithelium i.e. trachea. We present evidence that bacteria induced-antimicrobial peptide (AMP) production in the trachea is controlled by two signalling cascades. AMP gene transcription is activated by the inducible IMD pathway that acts non-cell autonomously in trachea. This IMD-dependent AMP activation is antagonized by a constitutively active signalling module involving the receptor Toll-8/Tollo, the ligand SpΓ€tzle2/DNT1 and Ect-4, the Drosophila ortholog of the human Sterile alpha and HEAT/ARMadillo motif (SARM). Our data show that, in addition to Toll-1 whose function is essential during the systemic immune response, Drosophila relies on another Toll family member to control the immune response in the respiratory epithelium

    Key stages in mammary gland development: The cues that regulate ductal branching morphogenesis

    Get PDF
    Part of how the mammary gland fulfills its function of producing and delivering adequate amounts of milk is by forming an extensive tree-like network of branched ducts from a rudimentary epithelial bud. This process, termed branching morphogenesis, begins in fetal development, pauses after birth, resumes in response to estrogens at puberty, and is refined in response to cyclic ovarian stimulation once the margins of the mammary fat pad are met. Thus it is driven by systemic hormonal stimuli that elicit local paracrine interactions between the developing epithelial ducts and their adjacent embryonic mesenchyme or postnatal stroma. This local cellular cross-talk, in turn, orchestrates the tissue remodeling that ultimately produces a mature ductal tree. Although the precise mechanisms are still unclear, our understanding of branching in the mammary gland and elsewhere is rapidly improving. Moreover, many of these mechanisms are hijacked, bypassed, or corrupted during the development and progression of cancer. Thus a clearer understanding of the underlying endocrine and paracrine pathways that regulate mammary branching may shed light on how they contribute to cancer and how their ill effects might be overcome or entirely avoided

    Two Distinct Integrin-Mediated Mechanisms Contribute to Apical Lumen Formation in Epithelial Cells

    Get PDF
    Background: Formation of apical compartments underlies the morphogenesis of most epithelial organs during development. The extracellular matrix (ECM), particularly the basement membrane (BM), plays an important role in orienting the apico-basal polarity and thereby the positioning of apical lumens. Integrins have been recognized as essential mediators of matrix-derived polarity signals. The importance of b1-integrins in epithelial polarization is well established but the significance of the accompanying a-subunits have not been analyzed in detail. Principal Findings: Here we demonstrate that two distinct integrin-dependent pathways regulate formation of apical lumens to ensure robust apical membrane biogenesis under different microenvironmental conditions; 1) a2b1- and a6b4integrins were required to establish a basal cue that depends on Rac1-activity and guides apico-basal cell polarization. 2) a3b1-integrins were implicated in positioning of mitotic spindles in cysts, a process that is essential for Cdc42-driven epithelial hollowing. Significance: Identification of the separate processes driven by particular integrin receptors clarifies the functional hierarchies between the different integrins co-expressed in epithelial cells and provides valuable insight into the complexity of cell-ECM interactions thereby guiding future studies addressing the molecular basis of epithelial morphogenesis durin

    A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    Get PDF
    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general β€œhouse-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system

    On the constructive Dedekind reals

    No full text
    In order to built the collection of Cauchy reals as a set in constructive set theory, the only Power Set-like principle needed is Exponentiation. In contrast, the proof that the Dedekind reals form a set has seemed to require more than that. The main purpose here is to show that Exponentiation alone does not suffice for the latter, by furnishing a Kripke model of constructive set theory, CZF with Subset Collection replaced by Exponentiation, in which the Cauchy reals form a set while the Dedekind reals constitute a proper class
    • …
    corecore