29 research outputs found

    Molecular detection of Trichostrongylus species through PCR followed by high resolution melt analysis of ITS-2 rDNA sequences

    Get PDF
    Polymerase chain reaction followed by high resolution melting (PCR-HRM) analysis is a simple, rapid and accurate method for molecular detection of various nematode species. The objective of the present study was, for the first time, to develop a PCR-HRM assay for the detection of various animal Trichostrongylus spp. A pair of primers targeting the ITS-2 rDNA region of the Trichostrongylus spp. was designed for the development of the HRM assay. DNA samples were extracted from 30 adult worms of Trichostrongylus spp., the ITS-2-rDNA region was amplified using PCR, and the resultant products were sequenced and characterized. Afterwards, the PCR-HRM analysis was conducted to detect and discriminate Trichostrongylus spp. Molecular sequence analysis revealed that 24, 4, and 1 of the samples were T. colubriformis, T. vitrinus and T. capricola, respectively. Results from PCR-HRM indicated that complete agreement was relatively found between speciation by HRM analysis and DNA sequencing for the detection of Trichostrongylus species. The PCR-HRM analysis method developed in the present study is fast and low-cost; the method can be comparable with other molecular detection techniques, representing a reliable tool for the identification of various species within the Trichostrongylus genus. © 2020 Elsevier B.V

    Sonochemical synthesis of ErVO4/MnWO4 heterostructures: Application as a novel nanostructured surface for electrochemical determination of tyrosine in biological samples

    Get PDF
    Present strategy introduces a novel method established for the synthesis of spherical shape ErVO4/MnWO4 heterostructures by a sonochemical method. This heterostructures with optima morphology can be synthesized by changing power and time ultrasound irradiation without any capping agent. BET analysis revealed that ErVO4/MnWO4 prepared in the presence of ultrasonic procedure has 75 times specific surface area as much as that of those was produced in the absence of ultrasonic rays. A variety of analyses (i.e., BET, XRD, TEM, EDS, FT-IR, and SEM) were applied for characterization of the ErVO4/MnWO4. Next, a selective and sensitive nanostructured sensor based on ErVO4/MnWO4 nanocomposite modified carbon paste electrode (ErVO4/MnWO4/CPE) was constructed for electrochemical detection of tyrosine (Tyr). The electrochemical characterizations were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Compared with the unmodified CPE, the oxidation peak current was significantly enhanced for Tyr. The impact of effective parameters on voltammetric response of Tyr was analyzed with design of experiments (DOE) and response surface methodology (RSM). Under the optimized conditions, the oxidation peak current of Tyr was linear over a range of 0.08�400.0 μM with a detection limit of 7.7 nM. Finally, the usage of the proposed method was confirmed by the recovery tests of Tyr in biological samples. © 201

    The effect of Gel Foam on post laminectomy epidural fibrosis in rabbits

    No full text
    "nBackground: Epidural fibrosis (EF) is a part of normal physiological tissue response to laminectomy and it may be an important cause of failed back surgery syndrome (FBSS). The objective of this study was to evaluate the effect of using gel foam after laminectomy on reduction of epidural fibrosis. "nMethods: In this prospective study forty five rabbits were recruited. The cases undergone bilateral laminectomy at the L4 and L5 lumbar levels under an approved surgical protocol. After eight weeks the rabbits were sacrificed and the spinal segments from L3 to L6 were removed en bloc. The amount of scar tissue at the laminectomy defect was scored. The fibroblast and inflammatory cell counts were also compared between two groups. "nResults: In this study 55% of group A rabbits were placed in grade 0 or I, grade II fibrosis could be detected in the remaining 45%. In group B these amounts were 73.7% and 26.3% respectively, which no significant statistical difference could be detected between two arms (p=0.189). Comparing the quantity of fibroblasts 40% of group A rabbits were recognized as grade I and the other 60% as grade II and grade I fibrosis was discovered in 42.1% of group B rabbits, while other 57.9% suffered from grade II fibrosis, again no significant statistical difference could be attributed between two arms (p=0.576). Also comparing inflammatory cell counts detected in the specimens no significant statistical difference could be detected either (p=0.465). "nConclusion: According to this study using gel foam during the laminectomy surgery in rabbits has no obvious effect in reducing post laminectomy epidural fibrosis after eight weeks of follow-up

    Discrepancies of Notch 1 receptor during development of chronic seizures

    No full text
    The critical role of Notch signaling has been shown in the pathogenesis of some neurological disorders including schizophrenia, epilepsy and Alzheimer�s disease. This study was aimed to evaluate the role of Notch 1 receptor in epileptogenesis as well as seizure characteristics. The animals were divided into three groups of sham, early stage and end stage. In sham group: Normal saline was injected intraperitoneally (ip) in the same as protocol of pentylenetetrazol (PTZ) injection. PTZ was injected (ip) every 48 hr over a period of 1 week in the group of early stage and over a period of 4 weeks in the end stage. The gene expression as well as distribution of Notch 1 receptor was assessed in the parietal cortex and hippocampus. In addition, the effect of agonist or antagonist of Notch 1 receptor was assessed on the epileptic discharges induced by PTZ injection. The gene expression of Notch 1 decreased in the hippocampus significantly in the end-stage group compared with sham, and early groups. Furthermore, distribution of Notch 1 receptor increased in the somatosensory cortex and decreased in the CA1 hippocampal area in the end-stage group. Intraventricular microinjection of Notch 1 agonist significantly increased the amplitude as well as frequency of spikes and decreased the latency of first epileptic discharges. Our findings illustrate the critical role of Notch signalling as a potential pathway in the epileptogenesis during development of chronic seizures. © 2019 Wiley Periodicals, Inc

    Sonochemical synthesis of ErVO4/MnWO4 heterostructures: Application as a novel nanostructured surface for electrochemical determination of tyrosine in biological samples

    Get PDF
    Present strategy introduces a novel method established for the synthesis of spherical shape ErVO4/MnWO4 heterostructures by a sonochemical method. This heterostructures with optima morphology can be synthesized by changing power and time ultrasound irradiation without any capping agent. BET analysis revealed that ErVO4/MnWO4 prepared in the presence of ultrasonic procedure has 75 times specific surface area as much as that of those was produced in the absence of ultrasonic rays. A variety of analyses (i.e., BET, XRD, TEM, EDS, FT-IR. and SEM) were applied for characterization of the ErVO4/MnWO4. Next, a selective and sensitive nanostructured sensor based on ErVO4/MnWO(4 )nanocomposite modified carbon paste electrode (ErVO4/MnWO4/CPE) was constructed for electrochemical detection of tyrosine (Tyr). The electrochemical characterizations were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Compared with the unmodified CPE, the oxidation peak current was significantly enhanced for Tyr. The impact of effective parameters on voltammetric response of Tyr was analyzed with design of experiments (DOE) and response surface methodology (RSM). Under the optimized conditions, the oxidation peak current of Tyr was linear over a range of 0.08-400.0 mu M with a detection limit of 7.7 nM. Finally, the usage of the proposed method was confirmed by the recovery tests of Tyr in biological samples. (C) 2019 Published by Elsevier Ltd

    Datasheet1_Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.pdf

    No full text
    IntroductionAs the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish.MethodsNinety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements.ResultsThe semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml).DiscussionThe proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.</p

    Video6_Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.mp4

    No full text
    IntroductionAs the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish.MethodsNinety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements.ResultsThe semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml).DiscussionThe proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.</p

    Video7_Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.mp4

    No full text
    IntroductionAs the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish.MethodsNinety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements.ResultsThe semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml).DiscussionThe proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.</p

    Video2_Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.mp4

    No full text
    IntroductionAs the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish.MethodsNinety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements.ResultsThe semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml).DiscussionThe proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.</p
    corecore