2,811 research outputs found

    Narrow Line Cooling and Momentum-Space Crystals

    Full text link
    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm 1S0 - 3P1 narrow line cooling of atomic 88Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to continuously bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling process, some of which are intimately linked to gravity, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.Comment: 14 pages, 19 figure

    Cystic kidney diseases: many ways to form a cyst

    Get PDF
    Renal cysts are a common radiological finding in both adults and children. They occur in a variety of conditions, and the clinical presentation, management, and prognosis varies widely. In this article, we discuss the major causes of renal cysts in children and adults with a particular focus on the most common genetic forms. Many cystoproteins have been localized to the cilia centrosome complex (CCC). We consider the evidence for a universal ‘cilia hypothesis’ for cyst formation and the evidence for non-ciliary proteins in cyst formation

    A fluorometric method for determining chlorophylls a, b, and c

    Get PDF
    A method for the determination of chlorophylls a, b, and c by fluorometric techniques is presented. The effects of accessory carotenoids and chlorophyll derivatives on the accuracy of this method are analyzed…

    Narrow Line Cooling: Finite Photon Recoil Dynamics

    Full text link
    We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0 - 3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon recoil limit. For positive detuning, the cloud divides into discrete momentum packets whose alignment mimics lattice points on a face-centered-cubic crystal. This novel behavior arises from velocity selection and "positive feedback" acceleration due to a finite number of photon recoils. Cooling is achieved with blue-detuned light around a velocity where gravity balances the radiative force.Comment: 4 pages, 3 figures, Phys. Rev. Lett., in pres

    Spectroscopy of the a^3\Sigma_u^+ state and the coupling to the X^1\Sigma_g^+ state of K_2

    Full text link
    We report on high resolution Fourier-transform spectroscopy of fluorescence to the a^3\Sigma_u^+ state excited by two-photon or two-step excitation from the X^1\Sigma_g^+ state to the 2^3\Pi_g state in the molecule K_2. These spectroscopic data are combined with recent results of Feshbach resonances and two-color photoassociation spectra for deriving the potential curves of X^1\Sigma_g^+ and a^3\Sigma_u^+ up to the asymptote. The precise relative position of the triplet levels with respect of the singlet levels was achieved by including the excitation energies from the X^1\Sigma_g^+ state to the 2^3\Pi_g state and down to the a^3\Sigma_u^+ state in the simultaneous fit of both potentials. The derived precise potential curves allow for reliable modeling of cold collisions of pairs of potassium atoms in their ^2S ground state

    Precision spectroscopy and density-dependent frequency shifts in ultracold Sr

    Full text link
    By varying the density of an ultracold 88^{88}Sr sample from 10910^9 cm−3^{-3} to >1012> 10^{12} cm−3^{-3}, we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0^1S_0 - 3P1^3P_1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88^{88}Sr 1S0−3P1^1S_0 - ^3P_1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is (434829121312334±20stat±33sys434 829 121 312 334 \pm 20_{stat} \pm 33_{sys}) Hz.Comment: 4 pages, 4 figures, 1 table. submitte

    Measurement of Linear Stark Interference in 199Hg

    Full text link
    We present measurements of Stark interference in the 61S0^1S_0 →\rightarrow 63P1^3P_1 transition in 199^{199}Hg, a process whereby a static electric field EE mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to EE-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, aSIa_{SI} = (aM1+aE2)(a_{M1} + a_{E2}) = (5.8 ±\pm 1.5)×10−9\times 10^{-9} (kV/cm)−1^{-1}, agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the 199^{199}Hg EDM search apparatus to resolve non-trivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.Comment: 4 pages, 4 figures, 1 table; revised in response to reviewer comment

    Improved limit on the permanent electric dipole moment of 199Hg

    Full text link
    We report the results of a new experimental search for a permanent electric dipole moment of 199Hg utilizing a stack of four vapor cells. We find d(199Hg) = (0.49 \pm 1.29_stat \pm 0.76_syst) x 10^{-29} e cm, and interpret this as a new upper bound, |d(199Hg)| < 3.1 x 10^{-29} e cm (95% C.L.). This result improves our previous 199Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.Comment: 4 pages, 4 figures. additional reference, minor edits in response to reviewer comment

    Standard errors and confidence intervals in within-subjects designs: Generalizing Loftus and Masson (1994) and avoiding the biases of alternative accounts

    Get PDF
    Repeated measures designs are common in experimental psychology. Because of the correlational structure in these designs, the calculation and interpretation of confidence intervals is nontrivial. One solution was provided by Loftus and Masson (Psychonomic Bulletin & Review 1:476–490, 1994). This solution, although widely adopted, has the limitation of implying same-size confidence intervals for all factor levels, and therefore does not allow for the assessment of variance homogeneity assumptions (i.e., the circularity assumption, which is crucial for the repeated measures ANOVA). This limitation and the method’s perceived complexity have sometimes led scientists to use a simplified variant, based on a per-subject normalization of the data (Bakeman & McArthur, Behavior Research Methods, Instruments, & Computers 28:584–589, 1996; Cousineau, Tutorials in Quantitative Methods for Psychology 1:42–45, 2005; Morey, Tutorials in Quantitative Methods for Psychology 4:61–64, 2008; Morrison & Weaver, Behavior Research Methods, Instruments, & Computers 27:52–56, 1995). We show that this normalization method leads to biased results and is uninformative with regard to circularity. Instead, we provide a simple, intuitive generalization of the Loftus and Masson method that allows for assessment of the circularity assumption

    Ultracold collision properties of metastable alkaline-earth atoms

    Get PDF
    Ultra-cold collisions of spin-polarized 24Mg,40Ca, and 88Sr in the metastable 3P2 excited state are investigated. We calculate the long-range interaction potentials and estimate the scattering length and the collisional loss rate as a function of magnetic field. The estimates are based on molecular potentials between 3P2 alkaline-earth atoms obtained from ab initio atomic and molecular structure calculations. The scattering lengths show resonance behavior due to the appearance of a molecular bound state in a purely long-range interaction potential and are positive for magnetic fields below 50 mT. A loss-rate model shows that losses should be smallest near zero magnetic field and for fields slightly larger than the resonance field, where the scattering length is also positive.Comment: 4 pages, 4 figure
    • …
    corecore